IDEAS home Printed from
   My bibliography  Save this article

On Testing Sample Selection Bias Under the Multicollinearity Problem


  • Takashi Yamagata
  • Chris Orme


This paper reviews and extends the literature on the finite sample behavior of tests for sample selection bias. Monte Carlo results show that, when the “multicollinearity problem” identified by Nawata (1993) is severe, (i) the t-test based on the Heckman-Greene variance estimator can be unreliable, (ii) the Likelihood Ratio test remains powerful, and (iii) nonnormality can be interpreted as severe sample selection bias by Maximum Likelihood methods, leading to negative Wald statistics. We also confirm previous findings (Leung and Yu, 1996) that the standard regression-based t-test (Heckman, 1979) and the asymptotically efficient Lagrange Multiplier test (Melino, 1982), are robust to nonnormality but have very little power.

Suggested Citation

  • Takashi Yamagata & Chris Orme, 2005. "On Testing Sample Selection Bias Under the Multicollinearity Problem," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 467-481.
  • Handle: RePEc:taf:emetrv:v:24:y:2005:i:4:p:467-481 DOI: 10.1080/02770900500406132

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Angelo Melino, 1982. "Testing for Sample Selection Bias," Review of Economic Studies, Oxford University Press, vol. 49(1), pages 151-153.
    2. Nawata, Kazumitsu, 1995. "Estimation of sample-selection models by the maximum likelihood method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 299-303.
    3. Olsen, Randall J, 1980. "A Least Squares Correction for Selectivity Bias," Econometrica, Econometric Society, vol. 48(7), pages 1815-1820, November.
    4. Leung, Siu Fai & Yu, Shihti, 1996. "On the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 197-229.
    5. Kazumitsu Nawata & Michael McAleer, 2001. "Size Characteristics Of Tests For Sample Selection Bias: A Monte Carlo Comparison And Empirical Example," Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 105-112.
    6. Chesher, Andrew & Spady, Richard, 1991. "Asymptotic Expansions of the Information Matrix Test Statistic," Econometrica, Econometric Society, vol. 59(3), pages 787-815, May.
    7. Orme, Chris, 1990. "The small-sample performance of the information-matrix test," Journal of Econometrics, Elsevier, vol. 46(3), pages 309-331, December.
    8. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    9. Mroz, Thomas A, 1987. "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, Econometric Society, vol. 55(4), pages 765-799, July.
    10. Nawata, Kazumitsu, 1994. "Estimation of sample selection bias models by the maximum likelihood estimator and Heckman's two-step estimator," Economics Letters, Elsevier, vol. 45(1), pages 33-40, May.
    11. Olsen, Randall J, 1982. "Distributional Tests for Selectivity Bias and a More Robust Likelihood Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(1), pages 223-240, February.
    12. Greene, William H, 1981. "Sample Selection Bias as a Specification Error: Comment," Econometrica, Econometric Society, vol. 49(3), pages 795-798, May.
    13. Nawata, Kazumitsu, 1993. "A note on the estimation of models with sample-selection biases," Economics Letters, Elsevier, vol. 42(1), pages 15-24.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Campbell, Randall C. & Nagel, Gregory L., 2016. "Private information and limitations of Heckman's estimator in banking and corporate finance research," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 186-195.
    2. Zhang, Fan, 2011. "Distributional impact analysis of the energy price reform in Turkey," Policy Research Working Paper Series 5831, The World Bank.
    3. Yamagata, Takashi, 2006. "The small sample performance of the Wald test in the sample selection model under the multicollinearity problem," Economics Letters, Elsevier, vol. 93(1), pages 75-81, October.
    4. Verbič, Miroslav & Spruk, Rok, 2011. "Aging population and public pensions: theory and evidence," MPRA Paper 38914, University Library of Munich, Germany.
    5. Quattri, Maria A. & Ozanne, Adam & Wang, Xioabing & Hall, Alastair R., 2011. "On The Role Of The Brokerage Institution In The Development Of Ethiopian Agricultural Markets," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108941, Agricultural Economics Society.
    6. Fan Zhang, 2015. "Energy Price Reform and Household Welfare: The Case of Turkey," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).

    More about this item


    Lagrange multiplier test; Likelihood ratio test; Sample selection bias; t -test; Wald test;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:24:y:2005:i:4:p:467-481. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.