IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v14y2007i5p453-475.html
   My bibliography  Save this article

An Improved Binomial Lattice Method for Multi-Dimensional Options

Author

Listed:
  • Andrea Gamba
  • Lenos Trigeorgis

Abstract

A binomial lattice approach is proposed for valuing options whose payoff depends on multiple state variables following correlated geometric Brownian processes. The proposed approach relies on two simple ideas: a log-transformation of the underlying processes, which is step by step consistent with the continuous-time diffusions, and a change of basis of the asset span, to transform asset prices into uncorrelated processes. An additional transformation is applied to approximate driftless dynamics. Even if these features are simple and straightforward to implement, it is shown that they significantly improve the efficiency of the multi-dimensional binomial algorithm. A thorough test of efficiency is provided compared with most popular binomial and trinomial lattice approaches for multi-dimensional diffusions. Although the order of convergence is the same for all lattice approaches, the proposed method shows improved efficiency.

Suggested Citation

  • Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
  • Handle: RePEc:taf:apmtfi:v:14:y:2007:i:5:p:453-475
    DOI: 10.1080/13504860701532237
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860701532237
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ekvall, Niklas, 1996. "A lattice approach for pricing of multivariate contingent claims," European Journal of Operational Research, Elsevier, vol. 91(2), pages 214-228, June.
    2. Gonzalo Cortazar & Eduardo S. Schwartz & Marcelo Salinas, 1998. "Evaluating Environmental Investments: A Real Options Approach," Management Science, INFORMS, vol. 44(8), pages 1059-1070, August.
    3. Breen, Richard, 1991. "The Accelerated Binomial Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(02), pages 153-164, June.
    4. Constantinides, George M, 1978. "Market Risk Adjustment in Project Valuation," Journal of Finance, American Finance Association, vol. 33(2), pages 603-616, May.
    5. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    6. Chen, Ren-Raw & Chung, San-Lin & Yang, Tyler T., 2002. "Option Pricing in a Multi-Asset, Complete Market Economy," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(04), pages 649-666, December.
    7. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(01), pages 1-12, March.
    8. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    9. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    10. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    11. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    12. Amin, Kaushik I., 1991. "On the Computation of Continuous Time Option Prices Using Discrete Approximations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(04), pages 477-495, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:annopr:v:266:y:2018:i:1:d:10.1007_s10479-017-2655-4 is not listed on IDEAS
    2. repec:kap:jrefec:v:55:y:2017:i:2:d:10.1007_s11146-016-9576-x is not listed on IDEAS
    3. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    4. Rohlfs, Wilko & Madlener, Reinhard, 2011. "Multi-Commodity Real Options Analysis of Power Plant Investments: Discounting Endogenous Risk Structures," FCN Working Papers 22/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Jarno Talponen & Minna Turunen, 2017. "Option pricing: A yet simpler approach," Papers 1705.00212, arXiv.org, revised Mar 2018.
    6. Laude, Audrey & Jonen, Christian, 2013. "Biomass and CCS: The influence of technical change," Energy Policy, Elsevier, vol. 60(C), pages 916-924.
    7. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Optimal Power Generation Investment: Impact of Technology Choices and Existing Portfolios for Deploying Low-Carbon Coal Technologies," FCN Working Papers 12/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    More about this item

    Keywords

    Option pricing; binomial lattice; multi-dimensional diffusion; JEL classification : G13;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:14:y:2007:i:5:p:453-475. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.