IDEAS home Printed from https://ideas.repec.org/a/spr/sumafo/v33y2025i1d10.1007_s00550-025-00563-3.html
   My bibliography  Save this article

Evaluating the extreme precipitation indices and their impacts in the Volta River Basin in West Africa from a nexus perspective

Author

Listed:
  • Anil Aryal

    (University of Yamanashi
    International Water Management Institute)

  • Jun Magome

    (University of Yamanashi)

  • Hiroshi Ishidaira

    (University of Yamanashi)

  • Kazuyoshi Souma

    (University of Yamanashi)

  • Umesh Chaudhary

    (S&U Consult Pvt. Ltd.)

Abstract

Changes in global or regional climate in recent decades have significantly impacted various aspects. Africa, with immense concern, is facing the consequences of extreme precipitation on socio-economic activities such as poverty, hydropower generation, and many more. This paper aims to evaluate the precipitation extremes in the Volta River Basin (VRB) in West Africa using the extreme climate indices proposed by the Expert Team on Climate Change Detection and Indices (ETCCDI). The precipitation data for the analysis were obtained from Climate Forecast System Reanalysis (CFSR) for 36 years from 1979 to 2013 at a spatial resolution of 0.5° at the tropics and 0.25° at the equator. The temporal distribution of average precipitation in the basin decreases at the rate of 15 mm per year, while the maximum and minimum temperatures increase at the rate of + 0.066 °C and + 0.019 °C, respectively. In addition, the temporal distribution of precipitation indices showed that the dry days (+ 1.1 days/year) are increasing, and the wet days (− 0.25 days/year) are decreasing. The dry years are more pronounced in the northern region of the basin, while the wet days are more pronounced in the southern. The increasing trend of the dry years and decreasing trend of the wet years will lead to face drought events in the future, affecting rain-fed irrigation productivity and hydropower production thereby affecting the nexus of water, agriculture, and socio-economic. With further increases in the dry events in the basin, adaptive climate measures need to be addressed to minimize climate-related hazards. This could be achieved by conducting nexus-based research considering climate science, social science, economics and the environment.

Suggested Citation

  • Anil Aryal & Jun Magome & Hiroshi Ishidaira & Kazuyoshi Souma & Umesh Chaudhary, 2025. "Evaluating the extreme precipitation indices and their impacts in the Volta River Basin in West Africa from a nexus perspective," Sustainability Nexus Forum, Springer, vol. 33(1), pages 1-15, December.
  • Handle: RePEc:spr:sumafo:v:33:y:2025:i:1:d:10.1007_s00550-025-00563-3
    DOI: 10.1007/s00550-025-00563-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00550-025-00563-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00550-025-00563-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonika Redhu & Pragati Jain, 2024. "Unveiling the nexus between water scarcity and socioeconomic development in the water-scarce countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19557-19577, August.
    2. Aditya Sood & Lal Muthuwatta & Matthew McCartney, 2013. "A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin," Water International, Taylor & Francis Journals, vol. 38(3), pages 297-311, May.
    3. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    4. Richard S. J. Tol, 2009. "The Economic Effects of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 29-51, Spring.
    5. Xuebin Zhang & Lisa Alexander & Gabriele C. Hegerl & Philip Jones & Albert Klein Tank & Thomas C. Peterson & Blair Trewin & Francis W. Zwiers, 2011. "Indices for monitoring changes in extremes based on daily temperature and precipitation data," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 851-870, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Liping, 2022. "The effect of climate news risk on uncertainties," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    2. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    3. Maddison, David & Rehdanz, Katrin, 2011. "The impact of climate on life satisfaction," Ecological Economics, Elsevier, vol. 70(12), pages 2437-2445.
    4. Thomas Buchholz & John Gunn & Bruce Springsteen & Gregg Marland & Max Moritz & David Saah, 2022. "Probability-based accounting for carbon in forests to consider wildfire and other stochastic events: synchronizing science, policy, and carbon offsets," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-21, January.
    5. Cheick Oumar Zouré & Arsène Kiema & Roland Yonaba & Bernard Minoungou, 2023. "Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa)," Land, MDPI, vol. 12(11), pages 1-22, November.
    6. Awaworyi Churchill, Sefa & Smyth, Russell & Trinh, Trong-Anh, 2022. "Energy poverty, temperature and climate change," Energy Economics, Elsevier, vol. 114(C).
    7. Oliver Schenker, 2013. "Exchanging Goods and Damages: The Role of Trade on the Distribution of Climate Change Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 261-282, February.
    8. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    9. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    10. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    11. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    12. Asian Development Bank (ADB), 2012. "Adaptation to Climate Change: The Case of A Combined Cycle Power Plant," ADB Reports RPT124612, Asian Development Bank (ADB), revised 04 Feb 2014.
    13. Sheng, Yu & Xu, Xinpeng, 2019. "The productivity impact of climate change: Evidence from Australia's Millennium drought," Economic Modelling, Elsevier, vol. 76(C), pages 182-191.
    14. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    15. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    16. Hennessey, Ryan & Pittman, Jeremy & Morand, Annette & Douglas, Allan, 2017. "Co-benefits of integrating climate change adaptation and mitigation in the Canadian energy sector," Energy Policy, Elsevier, vol. 111(C), pages 214-221.
    17. Foster, John & Bell, William Paul & Wild, Phillip & Sharma, Deepak & Sandu, Suwin & Froome, Craig & Wagner, Liam & Misra, Suchi & Bagia, Ravindra, 2013. "Analysis of institutional adaptability to redress electricity infrastructure vulnerability due to climate change," MPRA Paper 47787, University Library of Munich, Germany.
    18. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    19. Jonghyun Yoo & Robert Mendelsohn, 2018. "Sensitivity Of Mitigation To The Optimal Global Temperature: An Experiment With Dice," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-8, May.
    20. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sumafo:v:33:y:2025:i:1:d:10.1007_s00550-025-00563-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.