IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v34y2025i2d10.1007_s10260-025-00783-3.html
   My bibliography  Save this article

Robustification of structural equation modelling via global sensitivity analysis

Author

Listed:
  • Alessio Lachi

    (Saint Camillus International University of Health and Medical Sciences)

  • Josep Llach

    (University Pompeu Fabra of Barcelona)

  • Jordi Perramon

    (University Pompeu Fabra of Barcelona)

  • Michela Baccini

    (University of Florence)

  • Andrea Saltelli

    (University Pompeu Fabra of Barcelona)

Abstract

We propose a method for enhancing the robustness of Structural Equation Modelling (SEM), a multivariate statistical analysis technique employed for analyzing causal relationships among different aspects of given phenomena. This enhancement is achieved through the integration of Global Sensitivity Analysis, which assesses how uncertainties in model output can be attributed to various sources of input uncertainty. The robustification process involves several key steps, including bootstrapping evidence, error propagation, and uncertainty quantification. This method extends the approach named in the literature “modeling of the modelling process”. To illustrate this approach, we apply it to two previously published test cases where SEM is used. The first one is related to the impact of artificial intelligence adoption on employee engagement and the second one investigates the effects of service quality and environmental practices on the competitiveness and financial performance of hotels. By quantifying the uncertainty inherent in the inference of our test cases, this procedure increases the robustness of the results derived from the test cases, thus generating a more defensible inference.

Suggested Citation

  • Alessio Lachi & Josep Llach & Jordi Perramon & Michela Baccini & Andrea Saltelli, 2025. "Robustification of structural equation modelling via global sensitivity analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(2), pages 211-236, May.
  • Handle: RePEc:spr:stmapp:v:34:y:2025:i:2:d:10.1007_s10260-025-00783-3
    DOI: 10.1007/s10260-025-00783-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-025-00783-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-025-00783-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nate Breznau & Eike Mark Rinke & Alexander Wuttke & Hung H. V. Nguyen & Muna Adem & Jule Adriaans & Amalia Alvarez-Benjumea & Henrik K. Andersen & Daniel Auer & Flavio Azevedo & Oke Bahnsen & Dave Bal, 2022. "Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty," Decision Analysis, INFORMS, vol. 119(44), pages 2203150119-, November.
    2. Sik-Yum Lee & S. Wang, 1996. "Sensitivity analysis of structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 93-108, March.
    3. Breznau, Nate & Rinke, Eike Mark & Wuttke, Alexander & Nguyen, Hung H. V. & Adem, Muna & Adriaans, Jule & Alvarez-Benjumea, Amalia & Andersen, Henrik K. & Auer, Daniel & Azevedo, Flavio & Bahnsen, Oke, 2022. "Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 119(44), pages 1-8.
    4. Shu-Jia Wang & Sik-Yum Lee, 1996. "Sensitivity analysis of structural equation models with equality functional constraints," Computational Statistics & Data Analysis, Elsevier, vol. 23(2), pages 239-256, December.
    5. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    6. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    7. Llorenç Bagur-Femenías & Jordi Perramon & Marc Oliveras-Villanueva, 2019. "Effects of Service Quality Policies in the Tourism Sector Performance: An Empirical Analysis of Spanish Hotels and Restaurants," Sustainability, MDPI, vol. 11(3), pages 1-13, February.
    8. Astrachan, Claudia Binz & Patel, Vijay K. & Wanzenried, Gabrielle, 2014. "A comparative study of CB-SEM and PLS-SEM for theory development in family firm research," Journal of Family Business Strategy, Elsevier, vol. 5(1), pages 116-128.
    9. P. Bentler, 1983. "Some contributions to efficient statistics in structural models: Specification and estimation of moment structures," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 493-517, December.
    10. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    4. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Breznau, Nate & Rinke, Eike Mark & Wuttke, Alexander & Adem, Muna & Adriaans, Jule & Akdeniz, Esra & Alvarez-Benjumea, Amalia & Andersen, Henrik K. & Auer, Daniel & Azevedo, Flavio & Bahnsen, Oke & Ba, 2025. "The reliability of replications: a study in computational reproductions," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(3), pages 1-23.
    6. Liu, Xing & Ferrario, Elisa & Zio, Enrico, 2019. "Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 423-434.
    7. Manuel Galea & Patricia Giménez, 2019. "Local influence diagnostics for the test of mean–variance efficiency and systematic risks in the capital asset pricing model," Statistical Papers, Springer, vol. 60(1), pages 293-312, February.
    8. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Tuğba Yeğin & Muhammad Ikram, 2022. "Developing a Sustainable Omnichannel Strategic Framework toward Circular Revolution: An Integrated Approach," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    10. Cantone, Giulio Giacomo & Tomaselli, Venera, 2023. "A Multiversal Model of Vibration of Effects of the Equitable and Sustainable Well-Being (BES) on Fertility," MetaArXiv z5msx, Center for Open Science.
    11. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    12. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    13. Christoph Huber & Anna Dreber & Jürgen Huber & Magnus Johannesson & Michael Kirchler & Utz Weitzel & Miguel Abellán & Xeniya Adayeva & Fehime Ceren Ay & Kai Barron & Zachariah Berry & Werner Bönte , 2023. "Competition and moral behavior: A meta-analysis of forty-five crowd-sourced experimental designs," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(23), pages 2215572120-, June.
    14. Felix Holzmeister & Magnus Johannesson & Robert Böhm & Anna Dreber & Jürgen Huber & Michael Kirchler, 2023. "Heterogeneity in effect size estimates: Empirical evidence and practical implications," Working Papers 2023-17, Faculty of Economics and Statistics, Universität Innsbruck.
    15. Xiong, Qingwen & Du, Peng & Deng, Jian & Huang, Daishun & Song, Gongle & Qian, Libo & Wu, Zenghui & Luo, Yuejian, 2022. "Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Jalilvand, Abolhassan & Noroozabad, Mojtaba Rostami & Switzer, Jeannette, 2018. "Informed and uninformed investors in Iran: Evidence from the Tehran Stock Exchange," Journal of Economics and Business, Elsevier, vol. 95(C), pages 47-58.
    17. Tanaka, Yutaka & Zhang, Fanghong & Mori, Yuichi, 2003. "Local influence in principal component analysis: relationship between the local influence and influence function approaches revisited," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 143-160, October.
    18. Changcong Zhou & Zhenzhou Lu & Guijie Li, 2013. "A new algorithm for variance-based importance measures and importance kernel sensitivity," Journal of Risk and Reliability, , vol. 227(1), pages 16-27, February.
    19. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    20. Wang, Zhenqiang & Jia, Gaofeng, 2020. "Augmented sample-based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:34:y:2025:i:2:d:10.1007_s10260-025-00783-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.