IDEAS home Printed from https://ideas.repec.org/a/spr/ssefpa/v17y2025i1d10.1007_s12571-024-01504-6.html
   My bibliography  Save this article

Productivity effects of agroecological practices in Africa: insights from a systematic review and meta-analysis

Author

Listed:
  • Miriam E. Romero Antonio

    (University of Bonn)

  • Amy Faye

    (University of Bonn)

  • Bibiana Betancur-Corredor

    (University of Bonn)

  • Heike Baumüller

    (University of Bonn)

  • Joachim Braun

    (University of Bonn)

Abstract

Scholars have proposed agroecology as a promising method for promoting sustainable and socially just agricultural production systems. However, the extent to which agroecological practices will generate the yields required to ensure sufficient food globally remains unclear. This notion is particularly true in the context of Africa, where agricultural productivity is low but levels of hunger and malnutrition are high. To address this knowledge gap, this article undertakes a systematic review of empirical studies to assess the overall status of agroecology-related research in Africa. Using descriptive and meta-analytical methods, we evaluate empirical evidence on the effect of agroecological practices on land and labour productivity. Our analysis of 501 peer-reviewed articles reveals that the body of agroecology-related literature in Africa has been growing in the past 10 years from approximately 10 to more than 70 studies per annum before and after 2014, respectively, with a strong focus on East Africa, particularly Kenya. The majority of the reviewed studies relate to but do not mention agroecology in the title or abstract. Thus, solely relying on studies that use the term may introduce bias and overlook valuable research contributions to the field. The meta-analysis could identify 39 agronomic studies with 392 observations in which agroecological practices were compared to monocrop systems (defined as plots where similar plants grow alongside each other simultaneously and sequentially from one season to the next) with or without inputs as the control groups. The meta-analysis indicates that agroecological practices are associated with a positive and significant difference in land productivity, compared to that for monocrop systems especially so when monocrops are grown without inputs. However, the size and direction of yield differs by practice, crop, climatic factor, soil property and type of control.

Suggested Citation

  • Miriam E. Romero Antonio & Amy Faye & Bibiana Betancur-Corredor & Heike Baumüller & Joachim Braun, 2025. "Productivity effects of agroecological practices in Africa: insights from a systematic review and meta-analysis," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 17(1), pages 207-229, February.
  • Handle: RePEc:spr:ssefpa:v:17:y:2025:i:1:d:10.1007_s12571-024-01504-6
    DOI: 10.1007/s12571-024-01504-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12571-024-01504-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12571-024-01504-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanley, T.D. & Doucouliagos, Chris & Jarrell, Stephen B., 2008. "Meta-regression analysis as the socio-economics of economics research," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 37(1), pages 276-292, February.
    2. Cristiana Peano & Stefano Massaglia & Chiara Ghisalberti & Francesco Sottile, 2020. "Pathways for the Amplification of Agroecology in African Sustainable Urban Agriculture," Sustainability, MDPI, vol. 12(7), pages 1-13, March.
    3. Ken E. Giller & Thomas Delaune & João Vasco Silva & Mark Wijk & James Hammond & Katrien Descheemaeker & Gerrie Ven & Antonius G. T. Schut & Godfrey Taulya & Regis Chikowo & Jens A. Andersson, 2021. "Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1431-1454, December.
    4. Ken E. Giller & Thomas Delaune & João Vasco Silva & Katrien Descheemaeker & Gerrie Ven & Antonius G.T. Schut & Mark Wijk & James Hammond & Zvi Hochman & Godfrey Taulya & Regis Chikowo & Sudha Narayana, 2021. "The future of farming: Who will produce our food?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(5), pages 1073-1099, October.
    5. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    6. R. S. Ritzema & R. Frelat & S. Douxchamps & S. Silvestri & M. C. Rufino & M. Herrero & K. E. Giller & S. López-Ridaura & N. Teufel & B. K. Paul & M. T. Wijk, 2017. "Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 115-131, February.
    7. Chris Doucouliagos, 2016. "Meta-regression analysis: Producing credible estimates from diverse evidence," IZA World of Labor, Institute of Labor Economics (IZA), pages 320-320, November.
    8. Frank Ewert & Roland Baatz & Robert Finger, 2023. "Agroecology for a Sustainable Agriculture and Food System: From Local Solutions to Large-Scale Adoption," Annual Review of Resource Economics, Annual Reviews, vol. 15(1), pages 351-381, October.
    9. Chloe MacLaren & Andrew Mead & Derk Balen & Lieven Claessens & Ararso Etana & Janjo Haan & Wiepie Haagsma & Ortrud Jäck & Thomas Keller & Johan Labuschagne & Åsa Myrbeck & Magdalena Necpalova & Genero, 2022. "Long-term evidence for ecological intensification as a pathway to sustainable agriculture," Nature Sustainability, Nature, vol. 5(9), pages 770-779, September.
    10. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    11. Vibeke Bjornlund & Henning Bjornlund & Andre F. Van Rooyen, 2020. "Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world – a historical perspective," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 36(S1), pages 20-53, October.
    12. Joachim von Braun & Kaosar Afsana & Louise O. Fresco & Mohamed Hassan, 2021. "Food systems: seven priorities to end hunger and protect the planet," Nature, Nature, vol. 597(7874), pages 28-30, September.
    13. Jules N. Pretty, 1997. "The sustainable intensification of agriculture," Natural Resources Forum, Blackwell Publishing, vol. 21(4), pages 247-256, November.
    14. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam J. M. Devenish & Petra Schmitter & Nugun. P. Jellason & Nafeesa Esmail & Nur M. Abdi & Selase K. Adanu & Barbara Adolph & Maha Al-Zu’bi & Amali A. Amali & Jennie Barron & Abbie S. A. Chapman & Al, 2023. "One Hundred Priority Questions for the Development of Sustainable Food Systems in Sub-Saharan Africa," Land, MDPI, vol. 12(10), pages 1-23, October.
    2. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    3. Falconnier, Gatien N. & Leroux, Louise & Beillouin, Damien & Corbeels, Marc & Hijmans, Robert J. & Bonilla-Cedrez, Camila & van Wijk, Mark & Descheemaeker, Katrien & Zingore, Shamie & Affholder, Franç, 2023. "Increased mineral fertilizer use on maize can improve both household food security and regional food production in East Africa," Agricultural Systems, Elsevier, vol. 205(C).
    4. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    5. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    6. Mnqobi B. Njoko & Perpetua R. Mphahlele & Mashudu H. Mbulaheni, 2023. "Management and Sustainability of Small-Scale Agricultural Projects: A Case of Elias Motsoaledi Local Municipality, Limpopo Province, South Africa," Social Sciences and Education Research Review, Department of Communication, Journalism and Education Sciences, University of Craiova, vol. 10(2), pages 259-266, December.
    7. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Michler, Jeffrey D. & Baylis, Kathy & Arends-Kuenning, Mary & Mazvimavi, Kizito, 2019. "Conservation agriculture and climate resilience," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 148-169.
    9. Serge Savary & Stephen Waddington & Sonia Akter & Conny J. M. Almekinders & Jody Harris & Lise Korsten & Reimund P. Rötter & Goedele den Broeck, 2022. "Revisiting food security in 2021: an overview of the past year," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(1), pages 1-7, February.
    10. Jakub Staniszewski & Łukasz Kryszak, 2022. "Do Structures Matter in the Process of Sustainable Intensification? A Case Study of Agriculture in the European Union Countries," Agriculture, MDPI, vol. 12(3), pages 1-19, February.
    11. Amin Haghnejad & Mahboobeh Farahati, 2024. "An overview of meta-analytic methods for economic research," Papers 2412.10608, arXiv.org, revised Mar 2025.
    12. Zhiwen Ma & Wenping Qin & Zhaoqi Wang & Chenglong Han & Xiang Liu & Xiaotao Huang, 2022. "A Meta-Analysis of Soil Organic Carbon Response to Livestock Grazing in Grassland of the Tibetan Plateau," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    13. Ken E. Giller & Thomas Delaune & João Vasco Silva & Mark Wijk & James Hammond & Katrien Descheemaeker & Gerrie Ven & Antonius G. T. Schut & Godfrey Taulya & Regis Chikowo & Jens A. Andersson, 2021. "Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1431-1454, December.
    14. Ronner, E. & van de Ven, G.J. & Nowakunda, K. & Tugumisirize, J. & Kayiita, J. & Taulya, G. & Uckert, G. & Descheemaeker, K.K.E., 2023. "What future for banana-based farming systems in Uganda? A participatory scenario analysis," Agricultural Systems, Elsevier, vol. 209(C).
    15. David Weisberger & Virginia Nichols & Matt Liebman, 2019. "Does diversifying crop rotations suppress weeds? A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-12, July.
    16. Tom O’Donoghue & Budiman Minasny & Alex McBratney, 2022. "Regenerative Agriculture and Its Potential to Improve Farmscape Function," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    17. Ola Tveitereid Westengen & Progress Nyanga & Douty Chibamba & Monica Guillen-Royo & Dan Banik, 2018. "A climate for commerce: the political agronomy of conservation agriculture in Zambia," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 35(1), pages 255-268, March.
    18. World Bank Group, 2016. "Making Climate Finance Work in Agriculture," World Bank Publications - Reports 25366, The World Bank Group.
    19. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    20. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssefpa:v:17:y:2025:i:1:d:10.1007_s12571-024-01504-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.