IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14065-d956589.html
   My bibliography  Save this article

A Meta-Analysis of Soil Organic Carbon Response to Livestock Grazing in Grassland of the Tibetan Plateau

Author

Listed:
  • Zhiwen Ma

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Wenping Qin

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Zhaoqi Wang

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Chenglong Han

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Xiang Liu

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Xiaotao Huang

    (Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
    Key Laboratory of Adaption and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China)

Abstract

Known as the “roof of the world”, the Tibetan Plateau hosts the largest pastoral alpine ecosystem in the world. Nevertheless, there is currently no consensus on how soil organic carbon (SOC) stock changes after livestock grazing on the grassland of this region. Here, a meta-analysis was performed based on 55 published studies to quantify the livestock grazing-induced changes in SOC stock (0–30 cm) in grassland on the Tibetan Plateau. The results showed that livestock grazing significantly increased bulk density by an average of 11.5%, indicating that significant soil compaction was caused by livestock grazing. In contrast, SOC content and stock significantly decreased by 14.4% and 11.9% after livestock grazing, respectively. The decline rate of SOC stock was higher in alpine meadow (−12.4%) than that in alpine steppe (−8.8%), but there was no significant difference between the two rates. The SOC stocks decreased by 10.1%, 6.2% and 20.1% under light grazing, moderate grazing and heavy grazing, respectively. The decline rate of SOC stock under moderate grazing was significantly lower than that under heavy grazing. For different livestock types, it was observed that yak grazing significantly decreased SOC stock by 15.3%. Although the decline rate induced by yak grazing was higher than those induced by Tibetan sheep grazing and mixed grazing, no significant difference was detected among them. Similarly, the grazing-induced SOC declines also did not differ significantly among subgroups of grazing season. The positive relationships between SOC stock and plant biomass indicated that the decreased plant biomass was a likely reason for the declined SOC stock under grazing condition. The findings suggested that moderate grazing with Tibetan sheep in the warm season may minimize SOC losses from grazing activities in alpine grassland on the Tibetan Plateau.

Suggested Citation

  • Zhiwen Ma & Wenping Qin & Zhaoqi Wang & Chenglong Han & Xiang Liu & Xiaotao Huang, 2022. "A Meta-Analysis of Soil Organic Carbon Response to Livestock Grazing in Grassland of the Tibetan Plateau," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14065-:d:956589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    2. Liming Lai & Sandeep Kumar, 2020. "A global meta-analysis of livestock grazing impacts on soil properties," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
    3. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. David Weisberger & Virginia Nichols & Matt Liebman, 2019. "Does diversifying crop rotations suppress weeds? A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-12, July.
    3. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    4. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. repec:cup:judgdm:v:15:y:2020:i:6:p:972-988 is not listed on IDEAS
    6. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.
    7. Mario Herberz & Tobias Brosch & Ulf J. J. Hahnel, 2020. "Kilo what? Default units increase value sensitivity in joint evaluations of energy efficiency," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(6), pages 972-988, November.
    8. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    9. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    10. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    11. Georgiou, George K. & Guo, Kan & Naveenkumar, Nithya & Vieira, Ana Paula Alves & Das, J.P., 2020. "PASS theory of intelligence and academic achievement: A meta-analytic review," Intelligence, Elsevier, vol. 79(C).
    12. Stephan Kambach & Ingolf Kühn & Bastien Castagneyrol & Helge Bruelheide, 2016. "The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    13. repec:cup:judgdm:v:14:y:2019:i:3:p:234-279 is not listed on IDEAS
    14. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    15. Kelly R Moran & Sara Y Del Valle, 2016. "A Meta-Analysis of the Association between Gender and Protective Behaviors in Response to Respiratory Epidemics and Pandemics," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-25, October.
    16. Cyrielle Maroteau & Antonio Espuela-Ortiz & Esther Herrera-Luis & Sundararajan Srinivasan & Fiona Carr & Roger Tavendale & Karen Wilson & Natalia Hernandez-Pacheco & James D Chalmers & Steve Turner & , 2021. "LTA4H rs2660845 association with montelukast response in early and late-onset asthma," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    17. Barne Willie & Emma L. Sweeney & Steven G. Badman & Mark Chatfield & Andrew J. Vallely & Angela Kelly-Hanku & David M. Whiley, 2022. "The Prevalence of Antimicrobial Resistant Neisseria gonorrhoeae in Papua New Guinea: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 19(3), pages 1-11, January.
    18. Larney, Andrea & Rotella, Amanda & Barclay, Pat, 2019. "Stake size effects in ultimatum game and dictator game offers: A meta-analysis," Organizational Behavior and Human Decision Processes, Elsevier, vol. 151(C), pages 61-72.
    19. Blum, Diego & Holling, Heinz, 2017. "Spearman's law of diminishing returns. A meta-analysis," Intelligence, Elsevier, vol. 65(C), pages 60-66.
    20. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    21. Stephanie Medlock & Juliette L Parlevliet & Danielle Sent & Saeid Eslami & Marjan Askari & Derk L Arts & Joost B Hoekstra & Sophia E de Rooij & Ameen Abu-Hanna, 2017. "An email-based intervention to improve the number and timeliness of letters sent from the hospital outpatient clinic to the general practitioner: A pair-randomized controlled trial," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-13, October.
    22. Chin Lin & Hsiang-Cheng Chen & Wen-Hui Fang & Chih-Chien Wang & Yi-Jen Peng & Herng-Sheng Lee & Hung Chang & Chi-Ming Chu & Guo-Shu Huang & Wei-Teing Chen & Yu-Jui Tsai & Hong-Ling Lin & Fu-Huang Lin , 2016. "Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism and Susceptibility to Osteoarthritis of the Knee: A Case-Control Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14065-:d:956589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.