IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v112y2017i3d10.1007_s11192-017-2436-5.html
   My bibliography  Save this article

Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks

Author

Listed:
  • Alfonso Ávila-Robinson

    (Kyoto University
    Kyoto University)

  • Shintaro Sengoku

    (Tokyo Institute of Technology)

Abstract

This study assesses the knowledge-building dynamics of emerging technologies, their participating country-level actors, and their interrelations. We examine research on induced pluripotent stem (iPS) cells, a recently discovered stem cell species. Compared to other studies, our approach conflates the totality of publications and patents of a field, and their references, into single “techno-scientific networks” across intellectual bases (IB) and research fronts (RF). Diverse mapping approaches—co-citation, direct citation, and bibliographic coupling networks—are used, driven by the problems tackled by iPS cell researchers. Besides the study of the field of iPS cells as a whole, we assessed the roles of relevant countries in terms of “knowledge exploration,” “knowledge nurturing,” “knowledge exploitation,” and cognitive content. The results show that a fifth of nodes in IB and edges in RF interconnect science (S) and technology (T). S and T domains tell different, yet complementing stories: S overstresses upstream activities, and T captures the increasing influential role of application domains and general technologies. Both S and T reflect the path-dependent nature of iPS cells in embryonic stem cell technologies. Building on the feedback between IB and RF, we examine the dominating role of the United States. Japan, the pioneer, falls behind in quantity, yet its global influence remains intact. New entrants, such as China, are advancing rapidly, yet, cognitively, the bulk of efforts are still upstream. Our study demonstrates the need for bibliometric assessment studies to account for S&T co-evolution. The multiple data source-based, integrated bibliometric approaches of this study are initial efforts toward this direction.

Suggested Citation

  • Alfonso Ávila-Robinson & Shintaro Sengoku, 2017. "Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1691-1720, September.
  • Handle: RePEc:spr:scient:v:112:y:2017:i:3:d:10.1007_s11192-017-2436-5
    DOI: 10.1007/s11192-017-2436-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2436-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2436-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Björk, Bo-Christer & Solomon, David, 2013. "The publishing delay in scholarly peer-reviewed journals," Journal of Informetrics, Elsevier, vol. 7(4), pages 914-923.
    2. Edgar Schiebel, 2012. "Visualization of research fronts and knowledge bases by three-dimensional areal densities of bibliographically coupled publications and co-citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 557-566, May.
    3. Saviotti, Pier Paolo, 2007. "On the dynamics of generation and utilisation of knowledge: The local character of knowledge," Structural Change and Economic Dynamics, Elsevier, vol. 18(4), pages 387-408, December.
    4. Peter van den Besselaar & Gaston Heimeriks, 2006. "Mapping research topics using word-reference co-occurrences: A method and an exploratory case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 377-393, September.
    5. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    6. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    7. Chen, Ssu-Han & Huang, Mu-Hsuan & Chen, Dar-Zen, 2012. "Identifying and visualizing technology evolution: A case study of smart grid technology," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1099-1110.
    8. Schmoch, Ulrich, 2007. "Double-boom cycles and the comeback of science-push and market-pull," Research Policy, Elsevier, vol. 36(7), pages 1000-1015, September.
    9. Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
    10. Loet Leydesdorff & Ismael Rafols, 2011. "Local emergence and global diffusion of research technologies: An exploration of patterns of network formation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(5), pages 846-860, May.
    11. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    12. Jarneving, Bo, 2007. "Bibliographic coupling and its application to research-front and other core documents," Journal of Informetrics, Elsevier, vol. 1(4), pages 287-307.
    13. Alfonso Ávila-Robinson & Kumiko Miyazaki, 2013. "Evolutionary paths of change of emerging nanotechnological innovation systems: the case of ZnO nanostructures," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 829-849, June.
    14. Jackie Krafft & Francesco Quatraro & Pier Paolo Saviotti, 2011. "The knowledge-base evolution in biotechnology: a social network analysis," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(5), pages 445-475.
    15. Michel Zitt & Alain Lelu & Elise Bassecoulard, 2011. "Hybrid citation-word representations in science mapping: Portolan charts of research fields?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 19-39, January.
    16. Breschi, Stefano & Malerba, Franco & Orsenigo, Luigi, 2000. "Technological Regimes and Schumpeterian Patterns of Innovation," Economic Journal, Royal Economic Society, vol. 110(463), pages 388-410, April.
    17. Kumiko Miyazaki, 1995. "Building Competences in the Firm," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-349-23873-6.
    18. Jacques Michel & Bernd Bettels, 2001. "Patent citation analysis.A closer look at the basic input data from patent search reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 185-201, April.
    19. Jacobsson, Staffan, 2008. "The emergence and troubled growth of a 'biopower' innovation system in Sweden," Energy Policy, Elsevier, vol. 36(4), pages 1491-1508, April.
    20. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    21. Chaomei Chen & Loet Leydesdorff, 2014. "Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(2), pages 334-351, February.
    22. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    23. Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
    24. Christian Sternitzke, 2009. "Patents and publications as sources of novel and inventive knowledge," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(3), pages 551-561, June.
    25. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    26. Ho, Jae-Yun & O'Sullivan, Eoin, 2017. "Strategic standardisation of smart systems: A roadmapping process in support of innovation," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 301-312.
    27. Yoshiyuki Takeda & Yuya Kajikawa, 2009. "Optics: a bibliometric approach to detect emerging research domains and intellectual bases," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(3), pages 543-558, March.
    28. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    29. Julie Callaert & Joris Grouwels & Bart Looy, 2012. "Delineating the scientific footprint in technology: Identifying scientific publications within non-patent references," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 383-398, May.
    30. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
    31. Keller, Jonas & von der Gracht, Heiko A., 2014. "The influence of information and communication technology (ICT) on future foresight processes — Results from a Delphi survey," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 81-92.
    32. Ávila-Robinson, Alfonso & Miyazaki, Kumiko, 2013. "Dynamics of scientific knowledge bases as proxies for discerning technological emergence — The case of MEMS/NEMS technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1071-1084.
    33. Martin Meyer, 2000. "What is Special about Patent Citations? Differences between Scientific and Patent Citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 49(1), pages 93-123, August.
    34. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    35. Morlacchi, Piera & Nelson, Richard R., 2011. "How medical practice evolves: Learning to treat failing hearts with an implantable device," Research Policy, Elsevier, vol. 40(4), pages 511-525, May.
    36. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    37. Dorothea Jansen & Regina Görtz & Richard Heidler, 2010. "Knowledge production and the structure of collaboration networks in two scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 219-241, April.
    38. Momeni, Abdolreza & Rost, Katja, 2016. "Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 16-29.
    39. Metcalfe, J.S. & James, Andrew & Mina, Andrea, 2005. "Emergent innovation systems and the delivery of clinical services: The case of intra-ocular lenses," Research Policy, Elsevier, vol. 34(9), pages 1283-1304, November.
    40. David, Paul A., 1994. "Why are institutions the 'carriers of history'?: Path dependence and the evolution of conventions, organizations and institutions," Structural Change and Economic Dynamics, Elsevier, vol. 5(2), pages 205-220, December.
    41. Schumpeter Tamada & Yusuke Naito & Fumio Kodama & Kiminori Gemba & Jun Suzuki, 2006. "Significant difference of dependence upon scientific knowledge among different technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(2), pages 289-302, August.
    42. J.S. Metcalfe, 2002. "special issue: Knowledge of growth and the growth of knowledge," Journal of Evolutionary Economics, Springer, vol. 12(1), pages 3-15.
    43. D.K. Robinson & Lu Huang & Ying Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01071140, HAL.
    44. Alkemade, Floortje & Suurs, Roald A.A., 2012. "Patterns of expectations for emerging sustainable technologies," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 448-456.
    45. Richard R. Nelson, 2006. "The Market Economy and the Scientific Commons," Chapters, in: Birgitte Andersen (ed.), Intellectual Property Rights, chapter 1, Edward Elgar Publishing.
    46. Ramlogan, Ronnie & Consoli, Davide, 2007. "Knowledge, Understanding and the Dynamics of Medical Innovation," European Journal of Economic and Social Systems, Lavoisier, vol. 20(2), pages 231-249.
    47. Franco, L. Alberto & Meadows, Maureen & Armstrong, Steven J., 2013. "Exploring individual differences in scenario planning workshops: A cognitive style framework," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 723-734.
    48. Jun Suzuki & Kiminori Gemba & Schumpeter Tamada & Yoshihito Yasaki & Akira Goto, 2006. "Analysis of propensity to patent and science-dependence of large Japanese manufacturers of electrical machinery," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(2), pages 265-288, August.
    49. Osmo Kuusi & Martin Meyer, 2007. "Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 759-777, March.
    50. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
    51. Naoki Shibata & Yuya Kajikawa & Yoshiyuki Takeda & Katsumori Matsushima, 2009. "Comparative study on methods of detecting research fronts using different types of citation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 571-580, March.
    52. Allison D. Ebert & Junying Yu & Ferrill F. Rose & Virginia B. Mattis & Christian L. Lorson & James A. Thomson & Clive N. Svendsen, 2009. "Induced pluripotent stem cells from a spinal muscular atrophy patient," Nature, Nature, vol. 457(7227), pages 277-280, January.
    53. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    54. Nelson, Richard R. & Buterbaugh, Kristin & Perl, Marcel & Gelijns, Annetine, 2011. "How medical know-how progresses," Research Policy, Elsevier, vol. 40(10), pages 1339-1344.
    55. S. Phineas Upham & Henry Small, 2010. "Emerging research fronts in science and technology: patterns of new knowledge development," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 15-38, April.
    56. Michel Zitt & Alain Lelu & Elise Bassecoulard, 2011. "Hybrid citation‐word representations in science mapping: Portolan charts of research fields?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 19-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gisleine Carmo & Luiz Flávio Felizardo & Valderí Castro Alcântara & Cristiane Aparecida Silva & José Willer Prado, 2023. "The impact of Jürgen Habermas’s scientific production: a scientometric review," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1853-1875, March.
    2. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    3. Shuto Miyashita & Shintaro Sengoku, 2021. "Scientometrics for management of science: collaboration and knowledge structures and complexities in an interdisciplinary research project," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7419-7444, September.
    4. Li, Munan & Porter, Alan L. & Suominen, Arho & Burmaoglu, Serhat & Carley, Stephen, 2021. "An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ávila-Robinson, Alfonso & Islam, Nazrul & Sengoku, Shintaro, 2019. "Co-evolutionary and systemic study on the evolution of emerging stem cell-based therapies," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 324-339.
    2. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    3. Mu-hsuan Huang & Chia-Pin Chang, 2015. "A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2041-2057, March.
    4. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    5. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    6. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    7. Liu, Xiang & Jiang, Tingting & Ma, Feicheng, 2013. "Collective dynamics in knowledge networks: Emerging trends analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 425-438.
    8. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    9. Belussi, Fiorenza & Orsi, Luigi & Savarese, Maria, 2019. "Mapping Business Model Research: A Document Bibliometric Analysis," Scandinavian Journal of Management, Elsevier, vol. 35(3).
    10. Li, Munan & Porter, Alan L. & Suominen, Arho, 2018. "Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 285-296.
    11. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.
    12. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    14. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    15. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    16. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    17. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    18. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    19. Osman Issah & Lúcia Lima Rodrigues, 2021. "Corporate Social Responsibility and Corporate Tax Aggressiveness: A Scientometric Analysis of the Existing Literature to Map the Future," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    20. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:112:y:2017:i:3:d:10.1007_s11192-017-2436-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.