IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v78y2009i3d10.1007_s11192-007-2012-5.html
   My bibliography  Save this article

Optics: a bibliometric approach to detect emerging research domains and intellectual bases

Author

Listed:
  • Yoshiyuki Takeda

    (University of Tokyo)

  • Yuya Kajikawa

    (University of Tokyo)

Abstract

Optics is an important research domain both for its scientific interest and industrial applications. In this paper, we constructed a citation network of papers and performed topological clustering method to investigate the structure of research and to detect emerging research domains in optics. We found that optics consists of main five subclusters, optical communication, quantum optics, optical data processing, optical analysis and lasers. Then, we further investigated the detailed subcluster structures in it. By doing so, we detected some emerging research domains such as nonlinearity in photonic crystal fiber, broad band parametric amplifier, and in-vivo imaging techniques. We also discuss the distinction between research front and intellectual base in optics.

Suggested Citation

  • Yoshiyuki Takeda & Yuya Kajikawa, 2009. "Optics: a bibliometric approach to detect emerging research domains and intellectual bases," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(3), pages 543-558, March.
  • Handle: RePEc:spr:scient:v:78:y:2009:i:3:d:10.1007_s11192-007-2012-5
    DOI: 10.1007/s11192-007-2012-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-007-2012-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-007-2012-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen & Timothy Cribbin & Robert Macredie & Sonali Morar, 2002. "Visualizing and tracking the growth of competing paradigms: Two case studies," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 53(8), pages 678-689.
    2. Ming-Yueh Tsay & Shiow-Jen Jou & Sheau-Shin Ma, 2000. "A Bibliometric Study of Semiconductor Literature, 1978–1997," Scientometrics, Springer;Akadémiai Kiadó, vol. 49(3), pages 491-509, November.
    3. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    4. Ming-yueh Tsay & Hong Xu & Chia-wen Wu, 2003. "Author co-citation analysis of semiconductor literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 529-545, November.
    5. E.C.M. Noyons & H.F. Moed & M. Luwel, 1999. "Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 50(2), pages 115-131.
    6. Ryuzo Furukawa & Akira Goto, 2006. "Core scientists and innovation in Japanese electronics companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(2), pages 227-240, August.
    7. Jiancheng Guan & Nan Ma, 2007. "A bibliometric study of China’s semiconductor literature compared with other major asian countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 107-124, January.
    8. Raquel Rojo & Isabel Gómez, 2006. "Analysis of the Spanish scientific and technological output in the ICT sector," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(1), pages 101-121, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfonso Ávila-Robinson & Shintaro Sengoku, 2017. "Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1691-1720, September.
    2. Louis Lu & Bruce Lin & John Liu & Chang-Yung Yu, 2012. "Ethics in Nanotechnology: What’s Being Done? What’s Missing?," Journal of Business Ethics, Springer, vol. 109(4), pages 583-598, September.
    3. Gregorio González-Alcaide & Pedro Llorente & José M. Ramos, 2016. "Bibliometric indicators to identify emerging research fields: publications on mass gatherings," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1283-1298, November.
    4. Galimkair Mutanov & Zhanar Omirbekova & Aijaz A. Shaikh & Zhansaya Issayeva, 2023. "Sustainability-Driven Green Innovation: Revolutionising Aerospace Decision-Making with an Intelligent Decision Support System," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    5. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    6. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    7. Ivan Jarić & Jelena Knežević-Jarić & Mirjana Lenhardt, 2014. "Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 519-529, August.
    8. Robert K. Abercrombie & Akaninyene W. Udoeyop & Bob G. Schlicher, 2012. "A study of scientometric methods to identify emerging technologies via modeling of milestones," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 327-342, May.
    9. Hanning Guo & Scott Weingart & Katy Börner, 2011. "Mixed-indicators model for identifying emerging research areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 421-435, October.
    10. Liu, Yunmei & Yang, Liu & Chen, Min, 2021. "A new citation concept: Triangular citation in the literature," Journal of Informetrics, Elsevier, vol. 15(2).
    11. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
    12. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    13. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    14. Reindert K. Buter & Ed. C. M. Noyons & Anthony F. J. Raan, 2011. "Searching for converging research using field to field citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 325-338, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui-Yun Sung & Hsi-Yin Yeh & Jin-Kwan Lin & Ssu-Han Chen, 2017. "A visualization tool of patent topic evolution using a growing cell structure neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1267-1285, June.
    2. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    3. Chen, Kaihua & Guan, Jiancheng, 2011. "A bibliometric investigation of research performance in emerging nanobiopharmaceuticals," Journal of Informetrics, Elsevier, vol. 5(2), pages 233-247.
    4. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    5. Yoshiyuki Takeda & Yuya Kajikawa, 2010. "Tracking modularity in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 783-792, June.
    6. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    7. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    8. Hyeonchae Yang & Woo-Sung Jung, 2015. "A strategic management approach for Korean public research institutes based on bibliometric investigation," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1437-1464, July.
    9. Liming Zhao & Haihong Zhang & Wenqing Wu, 2019. "Cooperative knowledge creation in an uncertain network environment based on a dynamic knowledge supernetwork," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 657-685, May.
    10. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    11. Gallego-Losada, María-Jesús & Montero-Navarro, Antonio & García-Abajo, Elisa & Gallego-Losada, Rocío, 2023. "Digital financial inclusion. Visualizing the academic literature," Research in International Business and Finance, Elsevier, vol. 64(C).
    12. Mikel Alayo & Txomin Iturralde & Amaia Maseda & Gloria Aparicio, 2021. "Mapping family firm internationalization research: bibliometric and literature review," Review of Managerial Science, Springer, vol. 15(6), pages 1517-1560, August.
    13. Besstremyannaya, Galina & Dasher, Richard & Golovan, Sergei, 2022. "Quantifying heterogeneity in the relationship between R&D intensity and growth at innovative Japanese firms: A quantile regression approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 67, pages 27-45.
    14. P. Ebin Babu & Riya Mary, 2022. "Exploring the Research Trends in Green Tax: Bibliometric Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 157-162, November.
    15. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    16. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    17. Tsao, J.Y. & Boyack, K.W. & Coltrin, M.E. & Turnley, J.G. & Gauster, W.B., 2008. "Galileo's stream: A framework for understanding knowledge production," Research Policy, Elsevier, vol. 37(2), pages 330-352, March.
    18. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    19. Reza Naghizadeh & Shaban Elahi & Manoochehr Manteghi & Sepehr Ghazinoory & Marina Ranga, 2015. "Through the magnifying glass: an analysis of regional innovation models based on co-word and meta-synthesis methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2481-2505, November.
    20. Khanna, Rajat, 2021. "Aftermath of a tragedy: A star's death and coauthors’ subsequent productivity," Research Policy, Elsevier, vol. 50(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:78:y:2009:i:3:d:10.1007_s11192-007-2012-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.