IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v89y2011i1d10.1007_s11192-011-0433-7.html
   My bibliography  Save this article

Mixed-indicators model for identifying emerging research areas

Author

Listed:
  • Hanning Guo

    (Dalian University of Technology
    School of Library and Information Science, Indiana University)

  • Scott Weingart

    (School of Library and Information Science, Indiana University)

  • Katy Börner

    (School of Library and Information Science, Indiana University)

Abstract

This study presents a mixed model that combines different indicators to describe and predict key structural and dynamic features of emerging research areas. Three indicators are combined: sudden increases in the frequency of specific words; the number and speed by which new authors are attracted to an emerging research area, and changes in the interdisciplinarity of cited references. The mixed model is applied to four emerging research areas: RNAi, Nano, h-Index, and Impact Factor research using papers published in the Proceedings of the National Academy of Sciences of the United States of America (1982–2009) and in Scientometrics (1978–2009). Results are compared in terms of strengths and temporal dynamics. Results show that the indicators are indicative of emerging areas and they exhibit interesting temporal correlations: new authors enter the area first, then the interdisciplinarity of paper references increases, then word bursts occur. All workflows are reported in a manner that supports replication and extension by others.

Suggested Citation

  • Hanning Guo & Scott Weingart & Katy Börner, 2011. "Mixed-indicators model for identifying emerging research areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 421-435, October.
  • Handle: RePEc:spr:scient:v:89:y:2011:i:1:d:10.1007_s11192-011-0433-7
    DOI: 10.1007/s11192-011-0433-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0433-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-011-0433-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    3. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    4. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    5. Diana Lucio-Arias & Loet Leydesdorff, 2007. "Knowledge emergence in scientific communication: from “fullerenes” to “nanotubes”," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 603-632, March.
    6. Yoshiyuki Takeda & Yuya Kajikawa, 2009. "Optics: a bibliometric approach to detect emerging research domains and intellectual bases," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(3), pages 543-558, March.
    7. Luís M. A. Bettencourt & David I. Kaiser & Jasleen Kaur & Carlos Castillo-Chávez & David E. Wojick, 2008. "Population modeling of the emergence and development of scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 495-518, June.
    8. Anthony F. J. van Raan, 2000. "On Growth, Ageing, and Fractal Differentiation of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 347-362, February.
    9. Woo Hyoung Lee, 2008. "How to identify emerging research fields using scientometrics: An example in the field of Information Security," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 503-525, September.
    10. Mee-Jean Kim, 2001. "A bibliometric analysis of physics publications in Korea, 1994-1998," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(3), pages 503-521, March.
    11. Loet Leydesdorff & Thomas Schank, 2008. "Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(11), pages 1810-1818, September.
    12. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Jarić & Jelena Knežević-Jarić & Mirjana Lenhardt, 2014. "Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 519-529, August.
    2. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    3. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    4. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    5. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    6. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    7. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    8. Lu An & Xia Lin & Chuanming Yu & Xinwen Zhang, 2015. "Measuring and visualizing the contributions of Chinese and American LIS research institutions to emerging themes and salient themes," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1605-1634, December.
    9. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    10. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    11. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    12. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    13. Zhichao Fang & Rodrigo Costas & Wencan Tian & Xianwen Wang & Paul Wouters, 2020. "An extensive analysis of the presence of altmetric data for Web of Science publications across subject fields and research topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2519-2549, September.
    14. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    15. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    16. Bei Zeng & Haihua Lyu & Zhenyue Zhao & Jiang Li, 2021. "Exploring the direction and diversity of interdisciplinary knowledge diffusion: A case study of professor Zeyuan Liu's scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6253-6272, July.
    17. Wooseok Jang & Heeyeul Kwon & Yongtae Park & Hakyeon Lee, 2018. "Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 231-254, July.
    18. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    19. Jorge Mañana Rodríguez, 2017. "Disciplinarity and interdisciplinarity in citation and reference dimensions: knowledge importation and exportation taxonomy of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 617-642, February.
    20. Ryosuke L. Ohniwa & Aiko Hibino & Kunio Takeyasu, 2010. "Trends in research foci in life science fields over the last 30 years monitored by emerging topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 111-127, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:89:y:2011:i:1:d:10.1007_s11192-011-0433-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.