IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v44y2015i10p1827-1843.html
   My bibliography  Save this article

What is an emerging technology?

Author

Listed:
  • Rotolo, Daniele
  • Hicks, Diana
  • Martin, Ben R.

Abstract

There is considerable and growing interest in the emergence of novel technologies, especially from the policy-making perspective. Yet, as an area of study, emerging technologies lack key foundational elements, namely a consensus on what classifies a technology as ‘emergent’ and strong research designs that operationalise central theoretical concepts. The present paper aims to fill this gap by developing a definition of ‘emerging technologies’ and linking this conceptual effort with the development of a framework for the operationalisation of technological emergence. The definition is developed by combining a basic understanding of the term and in particular the concept of ‘emergence’ with a review of key innovation studies dealing with definitional issues of technological emergence. The resulting definition identifies five attributes that feature in the emergence of novel technologies. These are: (i) radical novelty, (ii) relatively fast growth, (iii) coherence, (iv) prominent impact, and (v) uncertainty and ambiguity. The framework for operationalising emerging technologies is then elaborated on the basis of the proposed attributes. To do so, we identify and review major empirical approaches (mainly in, although not limited to, the scientometric domain) for the detection and study of emerging technologies (these include indicators and trend analysis, citation analysis, co-word analysis, overlay mapping, and combinations thereof) and elaborate on how these can be used to operationalise the different attributes of emergence.

Suggested Citation

  • Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
  • Handle: RePEc:eee:respol:v:44:y:2015:i:10:p:1827-1843
    DOI: 10.1016/j.respol.2015.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733315001031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2015.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Janghyeok Yoon & Sungchul Choi & Kwangsoo Kim, 2011. "Invention property-function network analysis of patents: a case of silicon-based thin film solar cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 687-703, March.
    2. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    3. Hanning Guo & Scott Weingart & Katy Börner, 2011. "Mixed-indicators model for identifying emerging research areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 421-435, October.
    4. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    5. Alan L Porter & J David Roessner & Xiao-Yin Jin & Nils C Newman, 2002. "Measuring national ‘emerging technology’ capabilities," Science and Public Policy, Oxford University Press, vol. 29(3), pages 189-200, June.
    6. de Rassenfosse, Gaétan & Dernis, Hélène & Guellec, Dominique & Picci, Lucio & van Pottelsberghe de la Potterie, Bruno, 2013. "The worldwide count of priority patents: A new indicator of inventive activity," Research Policy, Elsevier, vol. 42(3), pages 720-737.
    7. Loet Leydesdorff & Ismael Rafols, 2011. "Local emergence and global diffusion of research technologies: An exploration of patterns of network formation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(5), pages 846-860, May.
    8. J. M. Ottino, 2004. "Engineering complex systems," Nature, Nature, vol. 427(6973), pages 399-399, January.
    9. Loet Leydesdorff & Daniele Rotolo & Ismael Rafols, 2012. "Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2239-2253, November.
    10. Gustafsson, Robin & Kuusi, Osmo & Meyer, Martin, 2015. "Examining open-endedness of expectations in emerging technological fields: The case of cellulosic ethanol," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 179-193.
    11. Connie K N Chang & Anthony Breitzman, 2009. "Using patents prospectively to identify emerging, high-impact technological clusters," Research Evaluation, Oxford University Press, vol. 18(5), pages 357-364, December.
    12. Alfonso Ávila-Robinson & Kumiko Miyazaki, 2013. "Evolutionary paths of change of emerging nanotechnological innovation systems: the case of ZnO nanostructures," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 829-849, June.
    13. Luciano Kay & Nils Newman & Jan Youtie & Alan L. Porter & Ismael Rafols, 2014. "Patent overlay mapping: Visualizing technological distance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2432-2443, December.
    14. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
    15. Ryosuke L. Ohniwa & Aiko Hibino & Kunio Takeyasu, 2010. "Trends in research foci in life science fields over the last 30 years monitored by emerging topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 111-127, October.
    16. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    17. Loet Leydesdorff & Ismael Rafols & Chaomei Chen, 2013. "Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal–journal citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(12), pages 2573-2586, December.
    18. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    19. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    20. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    21. Diana Lucio‐Arias & Loet Leydesdorff, 2009. "An indicator of research front activity: Measuring intellectual organization as uncertainty reduction in document sets," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(12), pages 2488-2498, December.
    22. Ivana Roche & Dominique Besagni & Claire François & Marianne Hörlesberger & Edgar Schiebel, 2010. "Identification and characterisation of technological topics in the field of Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 663-676, March.
    23. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    24. Sara Reardon, 2014. "Text-mining offers clues to success," Nature, Nature, vol. 509(7501), pages 410-410, May.
    25. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    26. Leydesdorff, Loet & Cozzens, Susan & Van den Besselaar, Peter, 1994. "Tracking areas of strategic importance using scientometric journal mappings," Research Policy, Elsevier, vol. 23(2), pages 217-229, March.
    27. Katz, J. Sylvan, 2006. "Indicators for complex innovation systems," Research Policy, Elsevier, vol. 35(7), pages 893-909, September.
    28. Lutz Bornmann & Loet Leydesdorff, 2011. "Which cities produce more excellent papers than can be expected? A new mapping approach, using Google Maps, based on statistical significance testing," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1954-1962, October.
    29. Corrocher Nicoletta & Malerba Franco & Montobbio Fabio, 2003. "The emergence of new technologies in the ICT field: main actors, geographical distribution and knowledge sources," Economics and Quantitative Methods qf0317, Department of Economics, University of Insubria.
    30. Ta-Shun Cho & Hsin-Yu Shih, 2011. "Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 795-811, December.
    31. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co-citation clustering using full text," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    32. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
    33. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    34. Luís M. A. Bettencourt & David I. Kaiser & Jasleen Kaur & Carlos Castillo-Chávez & David E. Wojick, 2008. "Population modeling of the emergence and development of scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 495-518, June.
    35. Robert K. Abercrombie & Akaninyene W. Udoeyop & Bob G. Schlicher, 2012. "A study of scientometric methods to identify emerging technologies via modeling of milestones," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 327-342, May.
    36. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
    37. Paul Nightingale, 2014. "What is technology? Six definitions and two pathologies," SPRU Working Paper Series 2014-19, SPRU - Science Policy Research Unit, University of Sussex Business School.
    38. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    39. Ávila-Robinson, Alfonso & Miyazaki, Kumiko, 2013. "Dynamics of scientific knowledge bases as proxies for discerning technological emergence — The case of MEMS/NEMS technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1071-1084.
    40. Shino Iwami & Junichiro Mori & Ichiro Sakata & Yuya Kajikawa, 2014. "Detection method of emerging leading papers using time transition," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1515-1533, November.
    41. Bettencourt, Luís M.A. & Kaiser, David I. & Kaur, Jasleen, 2009. "Scientific discovery and topological transitions in collaboration networks," Journal of Informetrics, Elsevier, vol. 3(3), pages 210-221.
    42. Woo Hyoung Lee, 2008. "How to identify emerging research fields using scientometrics: An example in the field of Information Security," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 503-525, September.
    43. Jun, Seung-Pyo & Yeom, Jaeho & Son, Jong-Ku, 2014. "A study of the method using search traffic to analyze new technology adoption," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 82-95.
    44. J Sylvan Katz & Viv Cothey, 2006. "Web indicators for complex innovation systems," Research Evaluation, Oxford University Press, vol. 15(2), pages 85-95, August.
    45. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    46. Mogoutov, Andrei & Kahane, Bernard, 2007. "Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking," Research Policy, Elsevier, vol. 36(6), pages 893-903, July.
    47. Alkemade, Floortje & Suurs, Roald A.A., 2012. "Patterns of expectations for emerging sustainable technologies," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 448-456.
    48. Sahal, Devendra, 1985. "Technological guideposts and innovation avenues," Research Policy, Elsevier, vol. 14(2), pages 61-82, April.
    49. Moed, Henk F., 2010. "Measuring contextual citation impact of scientific journals," Journal of Informetrics, Elsevier, vol. 4(3), pages 265-277.
    50. Ho, Jonathan C. & Saw, Ewe-Chai & Lu, Louis Y.Y. & Liu, John S., 2014. "Technological barriers and research trends in fuel cell technologies: A citation network analysis," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 66-79.
    51. Murat Bengisu, 2003. "Critical and emerging technologies in Materials, Manufacturing, and Industrial Engineering: A study for priority setting," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 473-487, November.
    52. Osmo Kuusi & Martin Meyer, 2007. "Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 759-777, March.
    53. Saviotti, P. P. & Metcalfe, J. S., 1984. "A theoretical approach to the construction of technological output indicators," Research Policy, Elsevier, vol. 13(3), pages 141-151, June.
    54. Jun, Seung-Pyo, 2012. "A comparative study of hype cycles among actors within the socio-technical system: With a focus on the case study of hybrid cars," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1413-1430.
    55. Grupp, Hariolf, 1994. "The measurement of technical performance of innovations by technometrics and its impact on established technology indicators," Research Policy, Elsevier, vol. 23(2), pages 175-193, March.
    56. Boon, Wouter & Moors, Ellen, 2008. "Exploring emerging technologies using metaphors - A study of orphan drugs and pharmacogenomics," Social Science & Medicine, Elsevier, vol. 66(9), pages 1915-1927, May.
    57. Tommaso Ciarli & Alex Coad & Ismael Rafols, 2015. "Quantitative Analysis of Technology Futures: A review of Techniques, Uses and Characteristics," SPRU Working Paper Series 2015-23, SPRU - Science Policy Research Unit, University of Sussex Business School.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    2. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    3. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    4. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    5. Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
    6. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    7. Yuan Zhou & Heng Lin & Yufei Liu & Wei Ding, 2019. "A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 167-185, July.
    8. Inchae Park & Byungun Yoon, 2018. "Identifying Promising Research Frontiers of Pattern Recognition through Bibliometric Analysis," Sustainability, MDPI, vol. 10(11), pages 1-32, November.
    9. Alfonso Ávila-Robinson & Shintaro Sengoku, 2017. "Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1691-1720, September.
    10. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    11. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    12. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
    13. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    14. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    15. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
    16. Li, Munan & Porter, Alan L. & Suominen, Arho, 2018. "Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 285-296.
    17. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    18. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    19. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    20. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:44:y:2015:i:10:p:1827-1843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.