IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v111y2017i3d10.1007_s11192-017-2361-7.html
   My bibliography  Save this article

A visualization tool of patent topic evolution using a growing cell structure neural network

Author

Listed:
  • Hui-Yun Sung

    (National Chung Hsing University)

  • Hsi-Yin Yeh

    (Policy Research Division)

  • Jin-Kwan Lin

    (Ming Chi University of Technology)

  • Ssu-Han Chen

    (Ming Chi University of Technology)

Abstract

This research used a cell structure map to visualize technological evolution and showed the developmental trend in a technological field. The basic concept was to organize patents into a map produced by growing cell structures. The map was then disassembled into clusters with similar contexts using the Girvan–Newman algorithm. Next, the continuity between clusters in two snapshots was identified and used as the base for establishing a trajectory in the technology. An analysis of patents in the flaw detection field found that the field was composed of several technological trajectories. Among them, ultrasonic flaw detection, wafer inspection and substrate inspection were relatively larger and more continuing technologies, while infrared thermography defect inspection has been an emerging topic in recent years. It is to be hoped that the map of technology constructed in this research provides insights into the history of technological evolution and helps explain the transition patterns through changes in cluster continuity. This can serve a reference point by experts who attempt to visualize the mapping of technological development or identify the latest focus of attention.

Suggested Citation

  • Hui-Yun Sung & Hsi-Yin Yeh & Jin-Kwan Lin & Ssu-Han Chen, 2017. "A visualization tool of patent topic evolution using a growing cell structure neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1267-1285, June.
  • Handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2361-7
    DOI: 10.1007/s11192-017-2361-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2361-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2361-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen & Timothy Cribbin & Robert Macredie & Sonali Morar, 2002. "Visualizing and tracking the growth of competing paradigms: Two case studies," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 53(8), pages 678-689.
    2. Chen, Ssu-Han & Huang, Mu-Hsuan & Chen, Dar-Zen, 2012. "Identifying and visualizing technology evolution: A case study of smart grid technology," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1099-1110.
    3. Mu-Hsuan Huang & Ssu-Han Chen & Chia-Ying Lin & Dar-Zen Chen, 2014. "Exploring temporal relationships between scientific and technical fronts: a case of biotechnology field," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1085-1100, February.
    4. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    5. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    6. Engelsman, E. C. & van Raan, A. F. J., 1994. "A patent-based cartography of technology," Research Policy, Elsevier, vol. 23(1), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Qing & Zhang, Xinyuan & Ding, Ying & Song, Min, 2020. "Monolingual and multilingual topic analysis using LDA and BERT embeddings," Journal of Informetrics, Elsevier, vol. 14(3).
    2. Hong Wu & Huifang Yi & Chang Li, 2021. "An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6301-6321, August.
    3. Yonghe Lu & Xin Xiong & Weiting Zhang & Jiaxin Liu & Ruijie Zhao, 2020. "Research on classification and similarity of patent citation based on deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 813-839, May.
    4. Jing Ma & Yaohui Pan & Chih-Yi Su, 2022. "Organization-oriented technology opportunities analysis based on predicting patent networks: a case of Alzheimer’s disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5497-5517, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junmo Kim & Juneseuk Shin, 2018. "Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1439-1459, September.
    2. Mikel Alayo & Txomin Iturralde & Amaia Maseda & Gloria Aparicio, 2021. "Mapping family firm internationalization research: bibliometric and literature review," Review of Managerial Science, Springer, vol. 15(6), pages 1517-1560, August.
    3. Mu-Hsuan Huang & Ssu-Han Chen & Chia-Ying Lin & Dar-Zen Chen, 2014. "Exploring temporal relationships between scientific and technical fronts: a case of biotechnology field," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1085-1100, February.
    4. Hwang, Seonho & Shin, Juneseuk, 2019. "Extending technological trajectories to latest technological changes by overcoming time lags," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 142-153.
    5. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    6. Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
    7. Yoshiyuki Takeda & Yuya Kajikawa, 2009. "Optics: a bibliometric approach to detect emerging research domains and intellectual bases," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(3), pages 543-558, March.
    8. Sohrabi, Babak & Khalilijafarabad, Ahmad, 2018. "Systematic method for finding emergence research areas as data quality," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 280-287.
    9. Shino Iwami & Junichiro Mori & Ichiro Sakata & Yuya Kajikawa, 2014. "Detection method of emerging leading papers using time transition," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1515-1533, November.
    10. Min Song & Go Eun Heo & Su Yeon Kim, 2014. "Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 397-428, October.
    11. Elona Marku & Maryia Zaitsava & Manuel Castriotta & Maria Chiara Di Guardo & Michela Loi, 2021. "Big Data and Technology Evolution in the IoT Industry," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(10), pages 1-94, July.
    12. Manuel Castriotta & Michela Loi & Elona Marku & Luca Naitana, 2019. "What’s in a name? Exploring the conceptual structure of emerging organizations," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 407-437, February.
    13. Yoshiyuki Takeda & Yuya Kajikawa, 2010. "Tracking modularity in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 783-792, June.
    14. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    15. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    16. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    17. Johnson Ankrah & Ana Monteiro & Helena Madureira, 2022. "Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    18. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    19. Derek Bosworth, 1997. "Rivalry and Anticompetitive Practices," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 4(1), pages 97-104.
    20. Livio Cricelli & Michele Grimaldi & Silvia Vermicelli, 2022. "Crowdsourcing and open innovation: a systematic literature review, an integrated framework and a research agenda," Review of Managerial Science, Springer, vol. 16(5), pages 1269-1310, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2361-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.