IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v98y2014i2d10.1007_s11192-013-1054-0.html
   My bibliography  Save this article

Exploring temporal relationships between scientific and technical fronts: a case of biotechnology field

Author

Listed:
  • Mu-Hsuan Huang

    (National Taiwan University)

  • Ssu-Han Chen

    (National Taiwan University)

  • Chia-Ying Lin

    (National Taiwan University)

  • Dar-Zen Chen

    (National Taiwan University)

Abstract

Biotechnology is an expanding interdisciplinary field in which the interactions of science and technology (S&T) are more and more intensified. Question raised regarding the dynamic interactions between S&T encourages us to propose a series of methodologies for examination. Using high-impact publications and patents as the proxy measures, two document sets are transformed into the scientific and technical front trajectories respectively, and then each subject is categorized into either basic science, or applied technology, or co-existence. The results show that, in the biotechnology field, subjects of embryonic or mesenchymal stem cells, RNA interference, microRNA, and microbial fuel cell are in the basic science phase; those of plant breeding, seed diversity, and taste receptors have been applied to practice. There also exists interactions between S&T in the subjects of disease treatment and gene analysis platform, in which the behavior of technology precedes science, science precedes technology, or synchronous development can be observed.

Suggested Citation

  • Mu-Hsuan Huang & Ssu-Han Chen & Chia-Ying Lin & Dar-Zen Chen, 2014. "Exploring temporal relationships between scientific and technical fronts: a case of biotechnology field," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1085-1100, February.
  • Handle: RePEc:spr:scient:v:98:y:2014:i:2:d:10.1007_s11192-013-1054-0
    DOI: 10.1007/s11192-013-1054-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1054-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1054-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonardo Costa Ribeiro & Ricardo Machado Ruiz & Américo Tristão Bernardes & Eduardo Motta Albuquerque, 2010. "Matrices of science and technology interactions and patterns of structured growth: implications for development," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 55-75, April.
    2. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
    3. Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
    4. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    5. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    6. Szu-chia S. Lo, 2010. "Scientific linkage of science research and technology development: a case of genetic engineering research," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 109-120, January.
    7. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    8. Julie Callaert & Joris Grouwels & Bart Looy, 2012. "Delineating the scientific footprint in technology: Identifying scientific publications within non-patent references," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 383-398, May.
    9. Engelsman, E. C. & van Raan, A. F. J., 1994. "A patent-based cartography of technology," Research Policy, Elsevier, vol. 23(1), pages 1-26, January.
    10. Francesco Lissoni & Fabio Montobbio, 2008. "Inventorship and Authorship in Patent-Publication Pairs: an Enquiry into the Economics of Scientific Credit," KITeS Working Papers 224, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Nov 2008.
    11. Wolfgang Glänzel & Bart Thijs, 2011. "Using ‘core documents’ for the representation of clusters and topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 297-309, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junmo Kim & Juneseuk Shin, 2018. "Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1439-1459, September.
    2. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    3. Hui-Yun Sung & Hsi-Yin Yeh & Jin-Kwan Lin & Ssu-Han Chen, 2017. "A visualization tool of patent topic evolution using a growing cell structure neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1267-1285, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
    2. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
    3. Sung, Hui-Yun & Wang, Chun-Chieh & Huang, Mu-Hsuan & Chen, Dar-Zen, 2015. "Measuring science-based science linkage and non-science-based linkage of patents through non-patent references," Journal of Informetrics, Elsevier, vol. 9(3), pages 488-498.
    4. Xu, Shuo & Ma, Xinyi & Wang, Hong & An, Xin & Li, Ling, 2024. "A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network," Journal of Informetrics, Elsevier, vol. 18(4).
    5. Leonardo Costa Ribeiro & Glenda Kruss & Gustavo Britto & Américo Tristão Bernardes & Eduardo Motta e Albuquerque, 2014. "A methodology for unveiling global innovation networks: patent citations as clues to cross border knowledge flows," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 61-83, October.
    6. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    7. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
    8. Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
    9. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    10. Xiaozan Lyu & Ping Zhou & Loet Leydesdorff, 2020. "Eco-system mapping of techno-science linkages at the level of scholarly journals and fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2037-2055, September.
    11. Naomi Fukuzawa & Takanori Ida, 2016. "Science linkages between scientific articles and patents for leading scientists in the life and medical sciences field: the case of Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 629-644, February.
    12. Naomi Fukuzawa & Takanori Ida, 2014. "Science linkages focused on star scientists in the life and medical sciences: The case of Japan," Discussion papers e-14-006, Graduate School of Economics Project Center, Kyoto University.
    13. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
    14. Chihmao Hsieh, 2011. "Explicitly searching for useful inventions: dynamic relatedness and the costs of connecting versus synthesizing," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 381-404, February.
    15. Yi-Ching Liaw & Te-Yi Chan & Chin-Yuan Fan & Cheng-Hsin Chiang, 2014. "Can the technological impact of academic journals be evaluated? The practice of non-patent reference (NPR) analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 17-37, October.
    16. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    17. Amalia Mas-Bleda & Mike Thelwall, 2016. "Can alternative indicators overcome language biases in citation counts? A comparison of Spanish and UK research," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2007-2030, December.
    18. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    19. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    20. Malwina Mejer, 2012. "The impact of knowledge diversity on inventive performance at European universities," Working Papers TIMES² 2013-004, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:98:y:2014:i:2:d:10.1007_s11192-013-1054-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.