IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i4s1751157724000701.html
   My bibliography  Save this article

A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network

Author

Listed:
  • Xu, Shuo
  • Ma, Xinyi
  • Wang, Hong
  • An, Xin
  • Li, Ling

Abstract

In the procedure of exploring science-technology linkages, non-patent literature (NPL) in patents, particularly scientific NPL, is considered to signal the relatedness between the developed technology and the cited science. However, many prior art search tools may not be powered with the cross-collection recommendation technique, or have limited cross-collection recommendation capabilities. In this paper, we present an approach to recommend scientific NPL for a focal patent on the basis of heterogeneous information network. This study views this cross-collection recommendation problem as a link prediction problem on the basis of meta-path counting approach. Extensive experiments on DrugBank dataset in the pharmaceutical field indicate that our approach is feasible and effective. This work provides a novel perspective on scientific NPL recommendation for a focal patent and opens up further possibilities for the linkages between science and technology. Nevertheless, more experiments in other fields are required to verify the recommended effects of the approach proposed in this study.

Suggested Citation

  • Xu, Shuo & Ma, Xinyi & Wang, Hong & An, Xin & Li, Ling, 2024. "A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network," Journal of Informetrics, Elsevier, vol. 18(4).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000701
    DOI: 10.1016/j.joi.2024.101557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    2. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    3. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    4. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
    5. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    6. Felix Moya-Anegon & Carmen Lopez-Illescas & Vicente Guerrero-Bote & Henk F. Moed, 2020. "The citation impact of social sciences and humanities upon patentable technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1665-1687, November.
    7. Shuo Xu & Ling Li & Xin An, 2023. "Do academic inventors have diverse interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1023-1053, February.
    8. Lea Helmers & Franziska Horn & Franziska Biegler & Tim Oppermann & Klaus-Robert Müller, 2019. "Automating the search for a patent’s prior art with a full text similarity search," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-17, March.
    9. Masashi Shirabe, 2014. "Identifying SCI covered publications within non-patent references in U.S. utility patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 999-1014, November.
    10. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    11. Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
    12. Noyons, E. C. M. & van Raan, A. F. J. & Grupp, H. & Schmoch, U., 1994. "Exploring the science and technology interface: inventor-author relations in laser medicine research," Research Policy, Elsevier, vol. 23(4), pages 443-457, July.
    13. Szu-chia S. Lo, 2010. "Scientific linkage of science research and technology development: a case of genetic engineering research," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 109-120, January.
    14. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    15. Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
    16. Julie Callaert & Joris Grouwels & Bart Looy, 2012. "Delineating the scientific footprint in technology: Identifying scientific publications within non-patent references," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 383-398, May.
    17. Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
    18. Shuo Xu & Dongsheng Zhai & Feifei Wang & Xin An & Hongshen Pang & Yirong Sun, 2019. "A novel method for topic linkages between scientific publications and patents," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(9), pages 1026-1042, September.
    19. Shuo Xu & Ling Li & Xin An & Liyuan Hao & Guancan Yang, 2021. "An approach for detecting the commonality and specialty between scientific publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7445-7475, September.
    20. Du, Jian & Li, Peixin & Guo, Qianying & Tang, Xiaoli, 2019. "Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis," Journal of Informetrics, Elsevier, vol. 13(1), pages 132-148.
    21. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
    22. Shuo Xu & Liyuan Hao & Xin An & Dongsheng Zhai & Hongshen Pang, 2019. "Types of DOI errors of cited references in Web of Science with a cleaning method," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1427-1437, September.
    23. Archontopoulos, Eugenio, 2004. "Prior art search tools on the Internet and legal status of the results: a European Patent Office perspective," World Patent Information, Elsevier, vol. 26(2), pages 113-121, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Shuo Xu & Ling Li & Xin An, 2023. "Do academic inventors have diverse interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1023-1053, February.
    3. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Shuo Xu & Ling Li & Xin An & Liyuan Hao & Guancan Yang, 2021. "An approach for detecting the commonality and specialty between scientific publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7445-7475, September.
    5. Li, Xin & Wang, Yan, 2024. "A novel integrated approach for quantifying the convergence of disruptive technologies from science to technology," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    6. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    7. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
    8. Zheng, Zhejun & Ma, Yaxue & Ba, Zhichao & Pei, Lei, 2024. "Tree knowledge structure for better insight: Capturing biomedical science-technology knowledge linkage with MeSH," Journal of Informetrics, Elsevier, vol. 18(4).
    9. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    10. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    11. Mu-Hsuan Huang & Ssu-Han Chen & Chia-Ying Lin & Dar-Zen Chen, 2014. "Exploring temporal relationships between scientific and technical fronts: a case of biotechnology field," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1085-1100, February.
    12. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    13. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    14. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    15. Xiaozan Lyu & Ping Zhou & Loet Leydesdorff, 2020. "Eco-system mapping of techno-science linkages at the level of scholarly journals and fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2037-2055, September.
    16. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    17. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    18. Dejian Yu & Zhaoping Yan, 2022. "Combining machine learning and main path analysis to identify research front: from the perspective of science-technology linkage," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4251-4274, July.
    19. Acosta, Manuel & Coronado, Daniel, 2003. "Science-technology flows in Spanish regions: An analysis of scientific citations in patents," Research Policy, Elsevier, vol. 32(10), pages 1783-1803, December.
    20. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.