IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i4s1751157724000816.html
   My bibliography  Save this article

Tree knowledge structure for better insight: Capturing biomedical science-technology knowledge linkage with MeSH

Author

Listed:
  • Zheng, Zhejun
  • Ma, Yaxue
  • Ba, Zhichao
  • Pei, Lei

Abstract

Measuring the knowledge linkage between science and technology (S&T) is crucial for understanding the interactions between S&T and assisting decision-makers in strategizing research and development investments. Conventional analyses of S&T knowledge linkage have frequently overlooked the semantic structure of knowledge elements thereby introducing biases in the measurements. To address this issue, this study introduces a novel method predicated on the tree semantic structure, which quantifies the S&T linkage by considering the hierarchy and category of knowledge elements within an ontological framework. In this method, knowledge trees are constructed to represent the core knowledge of S&T literature, incorporating hierarchically organized MeSH descriptors. These knowledge trees are subsequently utilized to measure the knowledge linkage between S&T by integrating intra-branch knowledge similarity and inter-branch knowledge distribution. An empirical analysis was conducted on a substantial corpus of scientific publications and patents within the biomedicine sector. The findings predominantly revealed a stronger knowledge linkage between S&T in recent years, relative to the early 2000 s. It was also observed that patents are more inclined to include broader concepts in their titles and abstracts, in contract to the more specific concepts found in scientific publications. S&T literatures have increasingly focused on knowledge related to diseases, equipment, and health care. To verify the reliability of the proposed method, validation was performed with alternative measurements of knowledge linkage. In comparison to single-feature-based linkage measurements and network-based approaches, our proposed method demonstrates superior adaptability in capturing S&T linkage, especially when there is a marked disparity in the sample sizes of S&T literature. This study not only enriches the measurements of S&T knowledge linkage, but also furnishes empirical insights into the evolving patterns of S&T linkage within the biomedical domain.

Suggested Citation

  • Zheng, Zhejun & Ma, Yaxue & Ba, Zhichao & Pei, Lei, 2024. "Tree knowledge structure for better insight: Capturing biomedical science-technology knowledge linkage with MeSH," Journal of Informetrics, Elsevier, vol. 18(4).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000816
    DOI: 10.1016/j.joi.2024.101568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
    2. Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
    3. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Du, Jian & Li, Peixin & Haunschild, Robin & Sun, Yinan & Tang, Xiaoli, 2020. "Paper-patent citation linkages as early signs for predicting delayed recognized knowledge: Macro and micro evidence," Journal of Informetrics, Elsevier, vol. 14(2).
    5. Shuo Xu & Ling Li & Xin An, 2023. "Do academic inventors have diverse interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1023-1053, February.
    6. Fabrizio, Kira R., 2009. "Absorptive capacity and the search for innovation," Research Policy, Elsevier, vol. 38(2), pages 255-267, March.
    7. Wang, Xuefeng & Zhang, Shuo & Liu, Yuqin & Du, Jian & Huang, Heng, 2021. "How pharmaceutical innovation evolves: The path from science to technological development to marketable drugs," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    8. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
    9. Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
    10. Xiaozan Lyu & Ping Zhou & Loet Leydesdorff, 2020. "Eco-system mapping of techno-science linkages at the level of scholarly journals and fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2037-2055, September.
    11. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    12. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    13. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    14. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    15. Brooks, Harvey, 1994. "The relationship between science and technology," Research Policy, Elsevier, vol. 23(5), pages 477-486, September.
    16. Chan-Yuan Wong & Hon-Ngen Fung, 2017. "Science-technology-industry correlative indicators for policy targeting on emerging technologies: exploring the core competencies and promising industries of aspirant economies," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 841-867, May.
    17. Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    18. Roh, Taeyeoun & Yoon, Byungun, 2023. "Discovering technology and science innovation opportunity based on sentence generation algorithm," Journal of Informetrics, Elsevier, vol. 17(2).
    19. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    20. Lauto, Giancarlo & Valentin, Finn, 2016. "The knowledge production model of the New Sciences: The case of Translational Medicine," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 12-21.
    21. Shuo Xu & Dongsheng Zhai & Feifei Wang & Xin An & Hongshen Pang & Yirong Sun, 2019. "A novel method for topic linkages between scientific publications and patents," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(9), pages 1026-1042, September.
    22. Du, Jian & Li, Peixin & Guo, Qianying & Tang, Xiaoli, 2019. "Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis," Journal of Informetrics, Elsevier, vol. 13(1), pages 132-148.
    23. Ji-ping Gao & Kun Ding & Li Teng & Jie Pang, 2012. "Hybrid documents co-citation analysis: making sense of the interaction between science and technology in technology diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 459-471, November.
    24. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
    25. Martin Meyer, 2002. "Tracing knowledge flows in innovation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(2), pages 193-212, June.
    26. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    2. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    3. Chen, Xi & Mao, Jin & Li, Gang, 2024. "A co-citation approach to the analysis on the interaction between scientific and technological knowledge," Journal of Informetrics, Elsevier, vol. 18(3).
    4. Li, Xin & Wang, Yan, 2024. "A novel integrated approach for quantifying the convergence of disruptive technologies from science to technology," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    5. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    6. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    7. Dejian Yu & Zhaoping Yan, 2022. "Combining machine learning and main path analysis to identify research front: from the perspective of science-technology linkage," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4251-4274, July.
    8. Shuo Xu & Ling Li & Xin An & Liyuan Hao & Guancan Yang, 2021. "An approach for detecting the commonality and specialty between scientific publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7445-7475, September.
    9. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
    10. Xingyu Gao & Qiang Wu & Yuanyuan Liu & Ruilu Yang, 2024. "Pasteur’s quadrant in AI: do patent-cited papers have higher scientific impact?," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(2), pages 909-932, February.
    11. Xu, Shuo & Ma, Xinyi & Wang, Hong & An, Xin & Li, Ling, 2024. "A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network," Journal of Informetrics, Elsevier, vol. 18(4).
    12. Shuo Xu & Ling Li & Xin An, 2023. "Do academic inventors have diverse interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1023-1053, February.
    13. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    14. Shin, Hyunjin & Woo, Hyun Goo & Sohn, Kyung-Ah & Lee, Sungjoo, 2023. "Comparing research trends with patenting activities in the biomedical sector: The case of dementia," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    15. Krzysztof Szczygielski & Jerzy Mycielski, 2024. "The mutual reinforcement of scientific and technological knowledge—a technology-level analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 6533-6549, November.
    16. René Belderbos & Nazareno Braito & Jian Wang, 2024. "Heterogeneous university research and firm R&D location decisions: research orientation, academic quality, and investment type," The Journal of Technology Transfer, Springer, vol. 49(5), pages 1959-1989, October.
    17. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
    18. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    19. Persoon, P.G.J. & Bekkers, R.N.A. & Alkemade, F., 2020. "The science base of renewables," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    20. Lorenzo Ardito & Roger Svensson, 2024. "Sourcing applied and basic knowledge for innovation and commercialization success," The Journal of Technology Transfer, Springer, vol. 49(3), pages 959-995, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.