IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v19y2025i1s1751157724001421.html
   My bibliography  Save this article

Unveiling intrinsic interactions of science and technology in artificial intelligence using a network portrait divergence approach

Author

Listed:
  • Meng, Kai
  • Ba, Zhichao
  • Wang, Chunying
  • Li, Gang

Abstract

Artificial Intelligence (AI) is experiencing unprecedented innovation and transformation, potentially attributed to intimate interactions between science and technology (S&T) within the field. To identify S&T linkages and detect intrinsic interactions within AI, this paper introduces a network portrait divergence approach, where S&T knowledge networks are prototyped as two-dimensional network portraits based on graph-invariant probability distributions, and comparing them by coupling network portrait divergence with knowledge content. Specifically, S&T knowledge of AI is first extracted and unified through KeyBERT and word-alignment algorithms. Subsequently, temporal S&T knowledge networks are constructed and visualized as two network portraits: node portraits and edge-weight portraits. Network portrait divergence, an information-theoretic, graph-like measure for comparing networks, is applied to calculate varying S&T portrait divergences. Finally, internal knowledge flows within S&T and dynamic interactions between them are unearthed based on multiscale backbone analysis. Empirical experiments on both synthetic networks (random graph ensembles) and real-world AI datasets underscore the feasibility and reliability of the network portrait divergence approach.

Suggested Citation

  • Meng, Kai & Ba, Zhichao & Wang, Chunying & Li, Gang, 2025. "Unveiling intrinsic interactions of science and technology in artificial intelligence using a network portrait divergence approach," Journal of Informetrics, Elsevier, vol. 19(1).
  • Handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001421
    DOI: 10.1016/j.joi.2024.101630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724001421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lian Duan & Lida Xu & Ying Liu & Jun Lee, 2009. "Cluster-based outlier detection," Annals of Operations Research, Springer, vol. 168(1), pages 151-168, April.
    2. Choudhury, Nazim & Faisal, Fahim & Khushi, Matloob, 2020. "Mining Temporal Evolution of Knowledge Graphs and Genealogical Features for Literature-based Discovery Prediction," Journal of Informetrics, Elsevier, vol. 14(3).
    3. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).
    4. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    5. Shuo Xu & Dongsheng Zhai & Feifei Wang & Xin An & Hongshen Pang & Yirong Sun, 2019. "A novel method for topic linkages between scientific publications and patents," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(9), pages 1026-1042, September.
    6. Serenko, Alexander & Dohan, Michael, 2011. "Comparing the expert survey and citation impact journal ranking methods: Example from the field of Artificial Intelligence," Journal of Informetrics, Elsevier, vol. 5(4), pages 629-648.
    7. Dwivedi, Yogesh K. & Hughes, Laurie & Ismagilova, Elvira & Aarts, Gert & Coombs, Crispin & Crick, Tom & Duan, Yanqing & Dwivedi, Rohita & Edwards, John & Eirug, Aled & Galanos, Vassilis & Ilavarasan, , 2021. "Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," International Journal of Information Management, Elsevier, vol. 57(C).
    8. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    9. Hajibabaei, Anahita & Schiffauerova, Andrea & Ebadi, Ashkan, 2022. "Gender-specific patterns in the artificial intelligence scientific ecosystem," Journal of Informetrics, Elsevier, vol. 16(2).
    10. Na Liu & Philip Shapira & Xiaoxu Yue, 2021. "Tracking developments in artificial intelligence research: constructing and applying a new search strategy," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3153-3192, April.
    11. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
    12. Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
    13. Borges, Aline F.S. & Laurindo, Fernando J.B. & Spínola, Mauro M. & Gonçalves, Rodrigo F. & Mattos, Claudia A., 2021. "The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions," International Journal of Information Management, Elsevier, vol. 57(C).
    14. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    15. Fukuda, Kayano, 2020. "Science, technology and innovation ecosystem transformation toward society 5.0," International Journal of Production Economics, Elsevier, vol. 220(C).
    16. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    17. Konstantinos Grigoriou & Frank T. Rothaermel, 2017. "Organizing for knowledge generation: internal knowledge networks and the contingent effect of external knowledge sourcing," Strategic Management Journal, Wiley Blackwell, vol. 38(2), pages 395-414, February.
    18. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 620(7972), pages 47-60, August.
    19. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    20. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    21. Joel Klinger & Juan Mateos-Garcia & Konstantinos Stathoulopoulos, 2021. "Deep learning, deep change? Mapping the evolution and geography of a general purpose technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5589-5621, July.
    22. Eva A. M. van Dis & Johan Bollen & Willem Zuidema & Robert van Rooij & Claudi L. Bockting, 2023. "ChatGPT: five priorities for research," Nature, Nature, vol. 614(7947), pages 224-226, February.
    23. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Publisher Correction: Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 621(7978), pages 33-33, September.
    24. Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
    25. Stefano Baruffaldi & Brigitte van Beuzekom & Hélène Dernis & Dietmar Harhoff & Nandan Rao & David Rosenfeld & Mariagrazia Squicciarini, 2020. "Identifying and measuring developments in artificial intelligence: Making the impossible possible," OECD Science, Technology and Industry Working Papers 2020/05, OECD Publishing.
    26. Li, Munan & Wang, Wenshu & Zhou, Keyu, 2021. "Exploring the technology emergence related to artificial intelligence: A perspective of coupling analyses," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    27. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    28. Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    2. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    3. Wang, Dan & Zhou, Xiao & Zhao, Pengwei & Pang, Juan & Ren, Qiaoyang, 2025. "Early identification of breakthrough technologies: Insights from science-driven innovations," Journal of Informetrics, Elsevier, vol. 19(1).
    4. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    5. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    6. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    7. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial Intelligence and the Transformation of Higher Education Institutions: A Systems Approach," Sustainability, MDPI, vol. 16(14), pages 1-21, July.
    8. Yang, Jinqing & Hu, Jiming, 2025. "Scientific knowledge role transition prediction from a knowledge hierarchical structure perspective," Journal of Informetrics, Elsevier, vol. 19(1).
    9. Xu, Shuo & Liu, Zhen & An, Xin & Wang, Hong & Pang, Hongshen, 2025. "Linkages among science, technology, and industry on the basis of main path analysis," Journal of Informetrics, Elsevier, vol. 19(1).
    10. Zheng, Zhejun & Ma, Yaxue & Ba, Zhichao & Pei, Lei, 2024. "Tree knowledge structure for better insight: Capturing biomedical science-technology knowledge linkage with MeSH," Journal of Informetrics, Elsevier, vol. 18(4).
    11. Shuo Xu & Ling Li & Xin An, 2023. "Do academic inventors have diverse interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1023-1053, February.
    12. Shin, Hyunjin & Woo, Hyun Goo & Sohn, Kyung-Ah & Lee, Sungjoo, 2023. "Comparing research trends with patenting activities in the biomedical sector: The case of dementia," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    13. Xueyun Rong & Zhongkai Yang & Yutao Sun, 2024. "Inventors’ brokerages dynamic and exploratory innovation: the moderating role of knowledge diversity," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(5), pages 2533-2558, May.
    14. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2024. "AI as a new emerging technological paradigm: evidence from global patenting," DISCE - Working Papers del Dipartimento di Politica Economica dipe0038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    15. Li, Xin & Wang, Yan, 2024. "A novel integrated approach for quantifying the convergence of disruptive technologies from science to technology," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    16. Dejian Yu & Zhaoping Yan, 2022. "Combining machine learning and main path analysis to identify research front: from the perspective of science-technology linkage," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4251-4274, July.
    17. Yuan Xu & Xi Chen & Jin Mao & Gang Li, 2025. "Will patents with more interdisciplinary scientific knowledge have higher technological impact? Empirical evidence from USPTO patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(4), pages 2037-2068, April.
    18. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2025. "Is artificial intelligence leading to a new technological paradigm?," Structural Change and Economic Dynamics, Elsevier, vol. 72(C), pages 347-359.
    19. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    20. Xu, Shuo & Ma, Xinyi & Wang, Hong & An, Xin & Li, Ling, 2024. "A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network," Journal of Informetrics, Elsevier, vol. 18(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.