IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v19y2025i1s1751157724001184.html
   My bibliography  Save this article

Early identification of breakthrough technologies: Insights from science-driven innovations

Author

Listed:
  • Wang, Dan
  • Zhou, Xiao
  • Zhao, Pengwei
  • Pang, Juan
  • Ren, Qiaoyang

Abstract

Identifying breakthrough technologies is crucial for advancing technological innovation and, in this sense, the innovation patterns driven by science are considered to be key pathways for forming breakthrough technologies. Building on this premise, this paper presents a framework for identifying breakthrough technologies that starts with these signals of scientific innovation. The first step in the method is to construct a science-technology knowledge network based on papers and patents. Then a two-stage selection method funnels the scientific innovation signals, filtering out those with the potential to trigger technological breakthroughs. Next, a machine learning-based link prediction model, integrating three types of features, identifies new links between science-driven signals and existing technologies. A community detection algorithm then identifies sub-networks of technologies formed around these new links. Finally, a structural entropy index is used to evaluate these sub-networks to determine potential breakthrough technologies. By systematically characterizing the content and core features of scientific innovation signals, this study reveals the driving sources of technological breakthroughs and sheds light on the absorption and diffusion processes of scientific innovation. We validated the method through a use case in the field of artificial intelligence. Those who manage technological innovation should find the insights of this research particularly valuable.

Suggested Citation

  • Wang, Dan & Zhou, Xiao & Zhao, Pengwei & Pang, Juan & Ren, Qiaoyang, 2025. "Early identification of breakthrough technologies: Insights from science-driven innovations," Journal of Informetrics, Elsevier, vol. 19(1).
  • Handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001184
    DOI: 10.1016/j.joi.2024.101606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724001184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balconi, Margherita & Brusoni, Stefano & Orsenigo, Luigi, 2010. "In defence of the linear model: An essay," Research Policy, Elsevier, vol. 39(1), pages 1-13, February.
    2. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    3. Li, Kai & Yan, Erjia, 2019. "Are NIH-funded publications fulfilling the proposed research? An examination of concept-matchedness between NIH research grants and their supported publications," Journal of Informetrics, Elsevier, vol. 13(1), pages 226-237.
    4. Ashish Arora & Sharon Belenzon & Jungkyu Suh, 2022. "Science and the Market for Technology," Management Science, INFORMS, vol. 68(10), pages 7176-7201, October.
    5. Dejian Yu & Zhaoping Yan, 2022. "Combining machine learning and main path analysis to identify research front: from the perspective of science-technology linkage," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4251-4274, July.
    6. Lutz Bornmann, 2014. "How are excellent (highly cited) papers defined in bibliometrics? A quantitative analysis of the literature," Research Evaluation, Oxford University Press, vol. 23(2), pages 166-173.
    7. Chung, Jaemin & Ko, Namuk & Kim, Hyeonsu & Yoon, Janghyeok, 2021. "Inventor profile mining approach for prospective human resource scouting," Journal of Informetrics, Elsevier, vol. 15(1).
    8. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
    9. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    10. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    11. Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
    12. Zhang, Ningning & You, Dingyi & Tang, Le & Wen, Ke, 2023. "Knowledge path dependence, external connection, and radical inventions: Evidence from Chinese Academy of Sciences," Research Policy, Elsevier, vol. 52(4).
    13. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    14. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    15. H. Igor Ansoff, 1980. "Strategic issue management," Strategic Management Journal, Wiley Blackwell, vol. 1(2), pages 131-148, April.
    16. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    17. Jeon, Daeseong & Lee, Junyoup & Ahn, Joon Mo & Lee, Changyong, 2023. "Measuring the novelty of scientific publications: A fastText and local outlier factor approach," Journal of Informetrics, Elsevier, vol. 17(4).
    18. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    19. Capponi, Giovanna & Martinelli, Arianna & Nuvolari, Alessandro, 2022. "Breakthrough innovations and where to find them," Research Policy, Elsevier, vol. 51(1).
    20. Adrian S. Petrescu, 2009. "Science and Technology for Economic Growth. New Insights from when the Data Contradicts Desktop Models1," Review of Policy Research, Policy Studies Organization, vol. 26(6), pages 839-880, November.
    21. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    22. Dedrick, Jason & Kraemer, Kenneth L., 2015. "Who captures value from science-based innovation? The distribution of benefits from GMR in the hard disk drive industry," Research Policy, Elsevier, vol. 44(8), pages 1615-1628.
    23. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    24. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    25. Roh, Taeyeoun & Yoon, Byungun, 2023. "Discovering technology and science innovation opportunity based on sentence generation algorithm," Journal of Informetrics, Elsevier, vol. 17(2).
    26. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    27. Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
    28. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    29. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
    30. Dixon, Tim & Eames, Malcolm & Britnell, Judith & Watson, Georgia Butina & Hunt, Miriam, 2014. "Urban retrofitting: Identifying disruptive and sustaining technologies using performative and foresight techniques," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 131-144.
    31. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.
    32. John E. Ettlie & William P. Bridges & Robert D. O'Keefe, 1984. "Organization Strategy and Structural Differences for Radical Versus Incremental Innovation," Management Science, INFORMS, vol. 30(6), pages 682-695, June.
    33. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    34. Narayanamurti, Venkatesh & Tsao, Jeffrey Y., 2024. "How technoscientific knowledge advances: A Bell-Labs-inspired architecture," Research Policy, Elsevier, vol. 53(4).
    35. Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
    2. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    3. Bing Li & Shiji Chen & Vincent Larivière, 2023. "Interdisciplinarity affects the technological impact of scientific research," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(12), pages 6527-6559, December.
    4. Chen, Xi & Mao, Jin & Li, Gang, 2024. "A co-citation approach to the analysis on the interaction between scientific and technological knowledge," Journal of Informetrics, Elsevier, vol. 18(3).
    5. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. René Belderbos & Nazareno Braito & Jian Wang, 2024. "Heterogeneous university research and firm R&D location decisions: research orientation, academic quality, and investment type," The Journal of Technology Transfer, Springer, vol. 49(5), pages 1959-1989, October.
    7. Yi Zhao & Chengzhi Zhang, 2025. "A review on the novelty measurements of academic papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(2), pages 727-753, February.
    8. Yuan Xu & Xi Chen & Jin Mao & Gang Li, 2025. "Will patents with more interdisciplinary scientific knowledge have higher technological impact? Empirical evidence from USPTO patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(4), pages 2037-2068, April.
    9. Gui, Liang & Wu, Jie & Liu, Peng & Ma, Tieju, 2025. "Recognition of promising technologies considering inventor and assignee's historic performance: A machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 214(C).
    10. Krzysztof Szczygielski & Jerzy Mycielski, 2024. "The mutual reinforcement of scientific and technological knowledge—a technology-level analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 6533-6549, November.
    11. Meng, Kai & Ba, Zhichao & Wang, Chunying & Li, Gang, 2025. "Unveiling intrinsic interactions of science and technology in artificial intelligence using a network portrait divergence approach," Journal of Informetrics, Elsevier, vol. 19(1).
    12. Zhaoping Yan & Kaiyu Fan, 2024. "An integrated indicator for evaluating scientific papers: considering academic impact and novelty," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 6909-6929, November.
    13. Chen, Xi & Mao, Jin & Ma, Yaxue & Li, Gang, 2024. "The knowledge linkage between science and technology influences corporate technological innovation: Evidence from scientific publications and patents," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    14. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    15. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    16. Sam Arts & Nicola Melluso & Reinhilde Veugelers, 2023. "Beyond Citations: Measuring Novel Scientific Ideas and their Impact in Publication Text," Papers 2309.16437, arXiv.org, revised Dec 2024.
    17. Zhentao Liang & Jin Mao & Gang Li, 2023. "Bias against scientific novelty: A prepublication perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 99-114, January.
    18. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    19. Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
    20. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.