IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v128y2023i12d10.1007_s11192-023-04846-8.html
   My bibliography  Save this article

Interdisciplinarity affects the technological impact of scientific research

Author

Listed:
  • Bing Li

    (Dalian University of Technology
    Université de Montréal)

  • Shiji Chen

    (Hangzhou Dianzi University)

  • Vincent Larivière

    (Université de Montréal
    Université du Québec à Montréal)

Abstract

How science contributes to technological innovation can benefit from a deep understanding of intrinsic characteristics of the science base that underlie technologies, especially characteristics with significant implications for the scientific base itself. This paper investigates the correlation between interdisciplinarity of scientific research (variety, balance, disparity, and Rao-Stirling) and their technological impact. Using all Web of Science research articles published in 2002 and USPTO patents, we find that the likelihood of a paper being cited by patents increases with variety and Rao-Stirling, and decreases with balance and disparity. Regarding specific technological impact, the significance of interdisciplinarity is more prominent in the long term and exhibits variations among different disciplines. Specifically, the intensity of technical impact decreases at a decreasing rate with variety over time, increases at a decreasing rate with Rao-Stirling over time, and decreases with disparity in the long term. Balance is insignificant but it presents a positive correlation in medicine and a negative correlation in natural science in the long term. The scope of technological impact focuses on the number of claims and IPCs, increase with variety and disparity in the long term, and increase with balance in the short term, but such positive correlation only in natural science in the long term. Furthermore, scientific impact and technological impact are closely related in our study, but in order to have technological impacts, interdisciplinary papers need first to reach a certain threshold in scientific impact. Our findings suggest that what is considered excellent within interdisciplinary research can potentially lead to remarkable advancements in technological innovation.

Suggested Citation

  • Bing Li & Shiji Chen & Vincent Larivière, 2023. "Interdisciplinarity affects the technological impact of scientific research," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(12), pages 6527-6559, December.
  • Handle: RePEc:spr:scient:v:128:y:2023:i:12:d:10.1007_s11192-023-04846-8
    DOI: 10.1007/s11192-023-04846-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-023-04846-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-023-04846-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    2. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    3. Vincent Larivière & Stefanie Haustein & Katy Börner, 2015. "Long-Distance Interdisciplinarity Leads to Higher Scientific Impact," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    4. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    5. Rick Rylance, 2015. "Grant giving: Global funders to focus on interdisciplinarity," Nature, Nature, vol. 525(7569), pages 313-315, September.
    6. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    7. Pezzoni, Michele & Veugelers, Reinhilde & Visentin, Fabiana, 2022. "How fast is this novel technology going to be a hit? Antecedents predicting follow-on inventions," Research Policy, Elsevier, vol. 51(3).
    8. Anthony F. J. Raan & Jos J. Winnink, 2018. "Do younger Sleeping Beauties prefer a technological prince?," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 701-717, February.
    9. Fontana, Magda & Iori, Martina & Leone Sciabolazza, Valerio & Souza, Daniel, 2022. "The interdisciplinarity dilemma: Public versus private interests," Research Policy, Elsevier, vol. 51(7).
    10. Ke, Qing, 2018. "Comparing scientific and technological impact of biomedical research," Journal of Informetrics, Elsevier, vol. 12(3), pages 706-717.
    11. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    12. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    13. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    14. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    15. repec:adr:anecst:y:2005:i:79-80:p:05 is not listed on IDEAS
    16. Martin S. Meyer, 2001. "Patent citation analysis in a novel field of technology:An exploration of nano-science and nano-technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 163-183, April.
    17. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    18. Shin, Seungryul Ryan & Lee, Jisoo & Jung, Yura Rosemary & Hwang, Junseok, 2022. "The diffusion of scientific discoveries in government laboratories: The role of patents filed by government scientists," Research Policy, Elsevier, vol. 51(5).
    19. Per Ahlgren & Bo Jarneving & Ronald Rousseau, 2003. "Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(6), pages 550-560, April.
    20. Jian Wang & Bart Thijs & Wolfgang Glänzel, 2015. "Interdisciplinarity and Impact: Distinct Effects of Variety, Balance, and Disparity," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    21. Persoon, P.G.J. & Bekkers, R.N.A. & Alkemade, F., 2020. "The science base of renewables," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    22. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
    23. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    24. Lee Branstetter, 2010. "Exploring the Link between Academic Science and Industrial Innovation," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 119-142, National Bureau of Economic Research, Inc.
    25. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    26. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    27. Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
    28. Seokbeom Kwon & Jan Youtie & Alan L Porter, 2021. "Interdisciplinary knowledge combinations and emerging technological topics: Implications for reducing uncertainties in research evaluation [Blade Runner Economics: Will Innovation Lead the Economic," Research Evaluation, Oxford University Press, vol. 30(1), pages 127-140.
    29. Coccia, Mario, 2022. "Probability of discoveries between research fields to explain scientific and technological change," Technology in Society, Elsevier, vol. 68(C).
    30. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    31. Lindell Bromham & Russell Dinnage & Xia Hua, 2016. "Interdisciplinary research has consistently lower funding success," Nature, Nature, vol. 534(7609), pages 684-687, June.
    32. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    33. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.
    34. Bruno Cassiman & Reinhilde Veugelers & Pluvia Zuniga, 2008. "In search of performance effects of (in)direct industry science links," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(4), pages 611-646, August.
    35. Lin Zhang & Beibei Sun & Lidan Jiang & Ying Huang, 2021. "On the relationship between interdisciplinarity and impact: Distinct effects on academic and broader impact [A Comparison of Two Approaches for Measuring Interdisciplinary Research Output: The Disc," Research Evaluation, Oxford University Press, vol. 30(3), pages 256-268.
    36. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    37. Diana Hicks & Anthony Breitzman & Kimberly Hamilton & Francis Narin, 2000. "Research excellence and patented innovation," Science and Public Policy, Oxford University Press, vol. 27(5), pages 310-320, October.
    38. Alfredo Yegros-Yegros & Ismael Rafols & Pablo D’Este, 2015. "Does Interdisciplinary Research Lead to Higher Citation Impact? The Different Effect of Proximal and Distal Interdisciplinarity," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    39. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    40. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    41. D’Este, Pablo & Llopis, Oscar & Rentocchini, Francesco & Yegros, Alfredo, 2019. "The relationship between interdisciplinarity and distinct modes of university-industry interaction," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    42. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    2. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    3. Kwon, Seokbeom, 2022. "Interdisciplinary knowledge integration as a unique knowledge source for technology development and the role of funding allocation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    4. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    5. Fei Shu & Jesse David Dinneen & Shiji Chen, 2022. "Measuring the disparity among scientific disciplines using Library of Congress Subject Headings," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3613-3628, June.
    6. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
    7. Shiji Chen & Kaiqi Zhang & Junping Qiu & Jiaqi Chai, 2024. "Interdisciplinarity and expert rating: an analysis based on faculty opinions," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 6597-6628, November.
    8. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    9. René Belderbos & Nazareno Braito & Jian Wang, 2024. "Heterogeneous university research and firm R&D location decisions: research orientation, academic quality, and investment type," The Journal of Technology Transfer, Springer, vol. 49(5), pages 1959-1989, October.
    10. Seolmin Yang & So Young Kim, 2023. "Knowledge-integrated research is more disruptive when supported by homogeneous funding sources: a case of US federally funded research in biomedical and life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3257-3282, June.
    11. Hou, Jianhua & Li, Hao & Zhang, Yang, 2024. "Influence of interdisciplinarity of scientific papers on the durability of citation diffusion: A perspective from citation discontinuance," Journal of Informetrics, Elsevier, vol. 18(3).
    12. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
    13. D’Este, Pablo & Robinson-García, Nicolás, 2023. "Interdisciplinary research and the societal visibility of science: The advantages of spanning multiple and distant scientific fields," Research Policy, Elsevier, vol. 52(2).
    14. Chen, Xi & Mao, Jin & Ma, Yaxue & Li, Gang, 2024. "The knowledge linkage between science and technology influences corporate technological innovation: Evidence from scientific publications and patents," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    15. Shiji Chen & Yanan Guo & Alvin Shijie Ding & Yanhui Song, 2024. "Is interdisciplinarity more likely to produce novel or disruptive research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(5), pages 2615-2632, May.
    16. Xin Liu & Yi Bu & Ming Li & Jiang Li, 2024. "Monodisciplinary collaboration disrupts science more than multidisciplinary collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 75(1), pages 59-78, January.
    17. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    18. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    19. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.
    20. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:128:y:2023:i:12:d:10.1007_s11192-023-04846-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.