IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i2d10.1007_s11192-018-2774-y.html
   My bibliography  Save this article

Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology

Author

Listed:
  • Fang Han

    (Massachusetts Institute of Technology
    Beijing University of Posts and Telecommunications)

  • Christopher L. Magee

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

The relationship of scientific knowledge development to technological development is widely recognized as one of the most important and complex aspects of technological evolution. This paper adds to our understanding of the relationship through use of a more rigorous structure for differentiating among technologies based upon technological domains (defined as consisting of the artifacts over time that fulfill a specific generic function using a specific body of technical knowledge). The key findings of the work are: Firstly, a Pearson correlation of 0.564 is found between technological relatedness among technological domains based upon patents citing other patents and technological relatedness among technological domains based upon patents citing similar scientific papers. This result indicates that a large portion of technological relatedness is due to relatedness of the underlying scientific categories. Secondly, the overall structure of the links found between scientific categories and technological domains is many-to-many rather than focused indicating a science-fostered mechanism for fairly broad “spillover”: Specific technological domains cite a wide variety of scientific categories; some scientific categories are cited in a variety of domains. Thirdly, some evidence is found supporting the co-evolution of science and technology but the evidence is not strong. Prior research that identifies emerging patent clusters and independent prior research identifying emerging scientific topics show statistically significant but qualitatively weak inter-relationships between the clusters and topics. This work also offers evidence that patent cluster emergence can, but does not usually, precede the emergence of related scientific topics. The lack of clear evidence for co-evolution is interpreted as resulting from the documented complex many-to-many relationship of science categories and technological domains and is not considered evidence against co-evolution.

Suggested Citation

  • Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2774-y
    DOI: 10.1007/s11192-018-2774-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2774-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2774-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher L. Benson & Christopher L. Magee, 2015. "Technology structural implications from the extension of a patent search method," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1965-1985, March.
    2. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    3. Acosta, Manuel & Coronado, Daniel, 2003. "Science-technology flows in Spanish regions: An analysis of scientific citations in patents," Research Policy, Elsevier, vol. 32(10), pages 1783-1803, December.
    4. van Eck, Nees Jan & Waltman, Ludo, 2014. "CitNetExplorer: A new software tool for analyzing and visualizing citation networks," Journal of Informetrics, Elsevier, vol. 8(4), pages 802-823.
    5. Murray, Fiona, 2004. "The role of academic inventors in entrepreneurial firms: sharing the laboratory life," Research Policy, Elsevier, vol. 33(4), pages 643-659, May.
    6. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    7. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    8. Ludo Waltman & Nees Eck, 2013. "A smart local moving algorithm for large-scale modularity-based community detection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(11), pages 1-14, November.
    9. Lybbert, Travis J. & Zolas, Nikolas J., 2014. "Getting patents and economic data to speak to each other: An ‘Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic activity," Research Policy, Elsevier, vol. 43(3), pages 530-542.
    10. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    11. Mowery, David & Rosenberg, Nathan, 1993. "The influence of market demand upon innovation: A critical review of some recent empirical studies," Research Policy, Elsevier, vol. 22(2), pages 107-108, April.
    12. Balconi, Margherita & Brusoni, Stefano & Orsenigo, Luigi, 2010. "In defence of the linear model: An essay," Research Policy, Elsevier, vol. 39(1), pages 1-13, February.
    13. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    14. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    15. Richard Klavans & Kevin W. Boyack, 2017. "Which Type of Citation Analysis Generates the Most Accurate Taxonomy of Scientific and Technical Knowledge?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 984-998, April.
    16. Christopher L. Benson & Christopher L. Magee, 2013. "Erratum to: A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 83-83, July.
    17. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    18. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    19. Samuel Kortum & Jonathan Putnam, 1997. "Assigning Patents to Industries: Tests of the Yale Technology Concordance," Economic Systems Research, Taylor & Francis Journals, vol. 9(2), pages 161-176.
    20. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    21. Grupp, Hariolf, 1996. "Spillover Effects and the Science Base of Innovations Reconsidered: An Empirical Approach," Journal of Evolutionary Economics, Springer, vol. 6(2), pages 175-197, May.
    22. Joel Mokyr, 2016. "A Culture of Growth: The Origins of the Modern Economy," Economics Books, Princeton University Press, edition 1, number 10835, April.
    23. Christopher L. Benson & Christopher L. Magee, 2013. "A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 69-82, July.
    24. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
    25. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    2. Ardito, Lorenzo & Natalicchio, Angelo & Appio, Francesco Paolo & Messeni Petruzzelli, Antonio, 2021. "The role of scientific knowledge within inventing teams and the moderating effects of team internationalization and team experience: Empirical tests into the aerospace sector," Journal of Business Research, Elsevier, vol. 128(C), pages 701-710.
    3. Johannes van der Pol & Jean-Paul Rameshkoumar, 2021. "A method to reduce false positives in a patent query," Bordeaux Economics Working Papers 2021-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    4. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    5. Yongchang Wei & Lei Chen & Yu Qi & Can Wang & Fei Li & Haorong Wang & Fangyu Chen, 2019. "A Complex Network Method in Criticality Evaluation of Air Quality Standards," Sustainability, MDPI, Open Access Journal, vol. 11(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    2. Changbae Mun & Sejun Yoon & Hyunseok Park, 2019. "Structural decomposition of technological domain using patent co-classification and classification hierarchy," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 633-652, November.
    3. Nees Jan Eck & Ludo Waltman, 2017. "Citation-based clustering of publications using CitNetExplorer and VOSviewer," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1053-1070, May.
    4. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    5. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    6. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    7. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    8. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    9. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    10. Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
    11. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    12. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    13. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    14. Chris W. Belter, 2013. "A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 629-644, May.
    15. Taalbi, Josef, 2017. "What drives innovation? Evidence from economic history," Research Policy, Elsevier, vol. 46(8), pages 1437-1453.
    16. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    17. Metcalfe, J.S. & James, Andrew & Mina, Andrea, 2005. "Emergent innovation systems and the delivery of clinical services: The case of intra-ocular lenses," Research Policy, Elsevier, vol. 34(9), pages 1283-1304, November.
    18. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    19. Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
    20. Li, Menghui & Yang, Liying & Zhang, Huina & Shen, Zhesi & Wu, Chensheng & Wu, Jinshan, 2017. "Do mathematicians, economists and biomedical scientists trace large topics more strongly than physicists?," Journal of Informetrics, Elsevier, vol. 11(2), pages 598-607.

    More about this item

    Keywords

    Patent; Scientific citation; Scientific vector; Technology map; Technological domains; Co-evolve;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C89 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2774-y. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.