IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278523.html
   My bibliography  Save this article

Assessing future technological impacts of patents based on the classification algorithms in machine learning: The case of electric vehicle domain

Author

Listed:
  • Fang Han
  • Shengtai Zhang
  • Junpeng Yuan
  • Li Wang

Abstract

Introduction: Identifying the technologies that will drive technological changes over the coming years is important for the optimal allocation of firms’ R&D resources and the deployment of innovation strategies. The citation frequency of a patent is widely recognized as representative of the patent’s value. Thus, identifying potential highly cited patents is an important goal. A number of studies have attempted to distinguish highly cited patents from others based on statistical models, but a more effective and applicable method needs to be further developed. Methods: This paper treats the prediction of later patent citations as a classification problem and proposes a novel framework based on machine learning methods. First, a indices system to identify highly cited patents is constructed using multiple factors that are believed to influence citation frequency. Second, various machine learning models are utilized to identify highly cited patents. The optimized model with the best generalization capability is selected to predict the future impacts of newly applied patents, which may be representative of emerging significant technologies. Finally, we select the electric vehicle (EV) domain as a case study to empirically test the validity of this framework. Results: The optimized support vector machine (SVM) model performs well in identifying highly cited EV patents. Technological frontiers in the EV domain are identified, which are related to the topics of information systems, batteries, stability control, wireless charging, and vehicle operation. Discussion: The good performance in prediction accuracy and generalization capability of the method proposed in this paper verifies its effectiveness and feasibility.

Suggested Citation

  • Fang Han & Shengtai Zhang & Junpeng Yuan & Li Wang, 2022. "Assessing future technological impacts of patents based on the classification algorithms in machine learning: The case of electric vehicle domain," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0278523
    DOI: 10.1371/journal.pone.0278523
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278523
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278523&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fuyuki Yoshikane, 2013. "Multiple regression analysis of a patent’s citation frequency and quantitative characteristics: the case of Japanese patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 365-379, July.
    2. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    3. Gandoman, Foad H. & Ahmadi, Abdollah & Bossche, Peter Van den & Van Mierlo, Joeri & Omar, Noshin & Nezhad, Ali Esmaeel & Mavalizadeh, Hani & Mayet, Clément, 2019. "Status and future perspectives of reliability assessment for electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 1-16.
    4. Anthony F. J. Raan & Jos J. Winnink, 2018. "Do younger Sleeping Beauties prefer a technological prince?," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 701-717, February.
    5. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    6. Fuyuki Yoshikane & Yutaka Suzuki & Keita Tsuji, 2012. "Analysis of the relationship between citation frequency of patents and diversity of their backward citations for Japanese patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 721-733, September.
    7. Ronald N. Kostoff, 2007. "The difference between highly and poorly cited medical articles in the journal Lancet," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(3), pages 513-520, September.
    8. Sungchul Choi & Hyunseok Park, 2016. "Investigation of Strategic Changes Using Patent Co-Inventor Network Analysis: The Case of Samsung Electronics," Sustainability, MDPI, vol. 8(12), pages 1-13, December.
    9. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    10. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
    11. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    12. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    13. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
    14. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    15. Francisco José Acedo & Carmen Barroso & Cristóbal Casanueva & José Luis Galán, 2006. "Co‐Authorship in Management and Organizational Studies: An Empirical and Network Analysis," Journal of Management Studies, Wiley Blackwell, vol. 43(5), pages 957-983, July.
    16. Kristina Dahlin & Deans M. Behrens, 2005. "When is an invention really radical? Defining and measuring technological radicalness," Post-Print hal-00480416, HAL.
    17. Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
    18. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    19. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    2. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    3. Kathryn Rudie Harrigan & Maria Chiara Guardo & Elona Marku, 2018. "Patent value and the Tobin’s q ratio in media services," The Journal of Technology Transfer, Springer, vol. 43(1), pages 1-19, February.
    4. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    5. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    6. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    7. Sandro Montresor & Gianluca Orsatti & Francesco Quatraro, 2023. "Technological novelty and key enabling technologies: evidence from European regions," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(6), pages 851-872, August.
    8. Cammarano, Antonello & Michelino, Francesca & Lamberti, Emilia & Caputo, Mauro, 2017. "Accumulated stock of knowledge and current search practices: The impact on patent quality," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 204-222.
    9. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    10. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    11. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    12. Colombo, Massimo G. & Guerini, Massimiliano & Hoisl, Karin & Zeiner, Nico M., 2023. "The dark side of signals: Patents protecting radical inventions and venture capital investments," Research Policy, Elsevier, vol. 52(5).
    13. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    14. Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
    15. Avimanyu Datta, 2016. "Evaluating The Antecedents Of Foundational Innovations: A Longitudinal Look At Patents From Information Technology Industry," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, January.
    16. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    17. Kolja Hesse & Dirk Fornahl, 2020. "Essential ingredients for radical innovations? The role of (un‐)related variety and external linkages in Germany," Papers in Regional Science, Wiley Blackwell, vol. 99(5), pages 1165-1183, October.
    18. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    19. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    20. Yuandi Wang & Xiongfeng Pan & Yantai Chen & Xin Gu, 2013. "Do references in transferred patent documents signal learning opportunities for the receiving firms?," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 731-752, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.