IDEAS home Printed from
   My bibliography  Save this article

Paper-patent citation linkages as early signs for predicting delayed recognized knowledge: Macro and micro evidence


  • Du, Jian
  • Li, Peixin
  • Haunschild, Robin
  • Sun, Yinan
  • Tang, Xiaoli


In this study, we investigate the extent to which patent citations to papers can serve as early signs for predicting delayed recognized knowledge in science using a comparative study with a control group, i.e., instant recognition papers. We identify the two opposite groups of papers by the Bcp measure, a parameter-free index for identifying papers which were recognized with delay. We provide a macro (Science/Nature papers dataset) and micro (a case chosen from the dataset) evidence on paper-patent citation linkages as early signs for predicting delayed recognized knowledge in science. It appears that papers with delayed recognition show a stronger and longer technical impact than instant recognition papers. We provide indication that in the more recent years papers with delayed recognition are awakened more often and earlier by a patent rather than by a scientific paper (also called “prince”). We also found that patent citations seem to play an important role to avoid instant recognition papers to level off or to become a so called “flash in the pan”, i.e., instant recognition. It also appears that the sleeping beauties may firstly encounter negative citations and then patent citations and finally get widely recognized. In contrast to the two focused fields (biology and chemistry) for instant recognition papers, delayed recognition papers are rather evenly distributed in biology, chemistry, psychology, geology, materials science, and physics. We discovered several pairs of “science sleeping”-“technology inducing”, such as “biology-biotechnology/pharmaceuticals”, “chemistry-chemical engineering”, as well as some trans-fields science-technology interactions, such as “psychology - computer technology/control technology/audio-visual technology”, “physics - computer technology”, and “mathematics-computer technology”. We propose in further research to discover the potential ahead of time and transformative research by using citation delay analysis, patent & NPL analysis, and citation context analysis.

Suggested Citation

  • Du, Jian & Li, Peixin & Haunschild, Robin & Sun, Yinan & Tang, Xiaoli, 2020. "Paper-patent citation linkages as early signs for predicting delayed recognized knowledge: Macro and micro evidence," Journal of Informetrics, Elsevier, vol. 14(2).
  • Handle: RePEc:eee:infome:v:14:y:2020:i:2:s1751157719301555
    DOI: 10.1016/j.joi.2020.101017

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Avery Sen, 2017. "Island + Bridge: how transformative innovation is organized in the federal government," Science and Public Policy, Oxford University Press, vol. 44(5), pages 707-721.
    2. Anthony F. J. Raan & Jos J. Winnink, 2018. "Do younger Sleeping Beauties prefer a technological prince?," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 701-717, February.
    3. Ke, Qing, 2018. "Comparing scientific and technological impact of biomedical research," Journal of Informetrics, Elsevier, vol. 12(3), pages 706-717.
    4. Ratnadeep Dey & Anurag Roy & Tanmoy Chakraborty & Saptarshi Ghosh, 2017. "Sleeping beauties in Computer Science: characterization and early identification," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1645-1663, December.
    5. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    6. Jian Du & Yishan Wu, 2018. "A parameter-free index for identifying under-cited sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 959-971, August.
    7. Small, Henry & Tseng, Hung & Patek, Mike, 2017. "Discovering discoveries: Identifying biomedical discoveries using citation contexts," Journal of Informetrics, Elsevier, vol. 11(1), pages 46-62.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:14:y:2020:i:2:s1751157719301555. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.