IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v57y2023i6d10.1007_s11135-022-01605-4.html
   My bibliography  Save this article

The dynamical relation between price changes and trading volume

Author

Listed:
  • Emiliano Alvarez

    (Universidad de la República)

  • Gabriel Brida

    (Universidad de la República)

  • Leonardo Moreno

    (Universidad de la República)

  • Andres Sosa

    (Universidad de la República)

Abstract

This paper introduces a new method to describe and analyse multidimensional time series based on wavelets. The methodology considers the time series as observations of a functional random variable. The paper generalizes previous research on stock market networks by including asset returns and volume trading as the main variables to study the financial market. The methodology is applied to examine the dynamics and structure of the Nasdaq-100 stock market during the pandemic period 2019/12–2021/12 considering both asset returns and volume trading to model the behaviour of different assets that are part of the index, applying an algorithm that offers better performance than others applied in the clustering literature. The study detects four clusters of firms corresponding with companies sharing common economic activities. The structure of the network reveals a nonlinear relationship between the variables, and the study shows that the main macroeconomic events during the period affect each cluster with different intensity. The change in the patterns of returns and risks and the redistribution of wealth in a highly changing environment are emerging phenomena, which must necessarily be carefully analyzed by public policies, in order to avoid the appearance of bubbles and systemic shocks.

Suggested Citation

  • Emiliano Alvarez & Gabriel Brida & Leonardo Moreno & Andres Sosa, 2023. "The dynamical relation between price changes and trading volume," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(6), pages 5355-5379, December.
  • Handle: RePEc:spr:qualqt:v:57:y:2023:i:6:d:10.1007_s11135-022-01605-4
    DOI: 10.1007/s11135-022-01605-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-022-01605-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-022-01605-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    2. Lehkonen, Heikki & Heimonen, Kari, 2014. "Timescale-dependent stock market comovement: BRICs vs. developed markets," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 90-103.
    3. Rafael Esteves Mansano & Luiz Emilio Allem & Renata Raposo Del-Vecchio & Carlos Hoppen, 2022. "Balanced portfolio via signed graphs and spectral clustering in the Brazilian stock market," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2325-2340, August.
    4. Antonis A. Michis, 2022. "Multiscale Partial Correlation Clustering of Stock Market Returns," JRFM, MDPI, vol. 15(1), pages 1-22, January.
    5. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    6. Juan Gabriel Brida & W. Adrian Risso, 2009. "Dynamic and Structure of the Italian stock market based on returns and volume trading," Economics Bulletin, AccessEcon, vol. 29(3), pages 2417-2423.
    7. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    8. Brida, Juan Gabriel & Matesanz, David & Seijas, Maria Nela, 2016. "Network analysis of returns and volume trading in stock markets: The Euro Stoxx case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 751-764.
    9. Francesca Fortuna & Fabrizio Maturo, 2019. "K-means clustering of item characteristic curves and item information curves via functional principal component analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2291-2304, September.
    10. Aliyev, Fuzuli & Ajayi, Richard & Gasim, Nijat, 2020. "Modelling asymmetric market volatility with univariate GARCH models: Evidence from Nasdaq-100," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    11. Smirlock, Michael & Starks, Laura, 1988. "An empirical analysis of the stock price-volume relationship," Journal of Banking & Finance, Elsevier, vol. 12(1), pages 31-41, March.
    12. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    13. Crouch, R L, 1970. "A Nonlinear Test of the Random-Walk Hypothesis," American Economic Review, American Economic Association, vol. 60(1), pages 199-202, March.
    14. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    15. Dahlan Abdullah & S. Susilo & Ansari Saleh Ahmar & R. Rusli & Rahmat Hidayat, 2022. "The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(3), pages 1283-1291, June.
    16. Epps, Thomas W, 1975. "Security Price Changes and Transaction Volumes: Theory and Evidence," American Economic Review, American Economic Association, vol. 65(4), pages 586-597, September.
    17. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    18. Behrendt, Simon & Schmidt, Alexander, 2021. "Nonlinearity matters: The stock price – trading volume relation revisited," Economic Modelling, Elsevier, vol. 98(C), pages 371-385.
    19. Jain, Prem C. & Joh, Gun-Ho, 1988. "The Dependence between Hourly Prices and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 269-283, September.
    20. Epps, Thomas W., 1977. "Security Price Changes and Transaction Volumes: Some Additional Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(1), pages 141-146, March.
    21. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    22. Hutson, Elaine & Kearney, Colm & Lynch, Margaret, 2008. "Volume and skewness in international equity markets," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1255-1268, July.
    23. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    24. Bui, Quynh & Ślepaczuk, Robert, 2022. "Applying Hurst Exponent in pair trading strategies on Nasdaq 100 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    25. Meir Statman & Steven Thorley & Keith Vorkink, 2006. "Investor Overconfidence and Trading Volume," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1531-1565.
    26. Brida, Juan Gabriel & Carrera, Edgar J. Sanchez & Segarra, Verónica, 2020. "Clustering and regime dynamics for economic growth and income inequality," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 99-108.
    27. Sevda Kuşkaya & Nurhan Toğuç & Faik Bilgili, 2022. "Wavelet coherence analysis and exchange rate movements," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4675-4692, December.
    28. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    29. Samuel Tabot Enow, 2022. "Price Clustering in International Financial Markets during the COVID-19 Pandemic and Its Implications," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 10(2), pages 46-53.
    30. Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
    31. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    32. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    33. Harris, Lawrence, 1987. "Transaction Data Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 127-141, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    2. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    3. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    4. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    5. Anirut Pisedtasalasai & Abeyratna Gunasekarage, 2007. "Causal and Dynamic Relationships among Stock Returns, Return Volatility and Trading Volume: Evidence from Emerging markets in South-East Asia," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(4), pages 277-297, December.
    6. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    7. Gupta, Suman & Das, Debojyoti & Hasim, Haslifah & Tiwari, Aviral Kumar, 2018. "The dynamic relationship between stock returns and trading volume revisited: A MODWT-VAR approach," Finance Research Letters, Elsevier, vol. 27(C), pages 91-98.
    8. Zhang, Wei & Bi, Zhengzheng & Shen, Dehua, 2017. "Investor structure and the price–volume relationship in a continuous double auction market: An agent-based modeling perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 345-355.
    9. Ling-Yun He & Sheng Yang & Wen-Si Xie & Zhi-Hong Han, 2014. "Contemporaneous and Asymmetric Properties in the Price-Volume Relationships in China's Agricultural Futures Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(S1), pages 148-166.
    10. Kumar, Brajesh & Singh, Priyanka & Pandey, Ajay, 2009. "The Dynamic Relationship between Price and Trading Volume:Evidence from Indian Stock Market," IIMA Working Papers WP2009-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    11. Brajesh Kumar, 2010. "The Dynamic Relationship between Price and Trading Volume: Evidence from Indian Stock Market," Working Papers id:2379, eSocialSciences.
    12. Rodriguez, E. & Alvarez-Ramirez, J., 2021. "Time-varying cross-correlation between trading volume and returns in US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    14. Doojin RYU & Hyein SHIM, 2017. "Intraday Dynamics of Asset Returns, Trading Activities, and Implied Volatilities: A Trivariate GARCH Framework," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 45-61, June.
    15. Foroutan, Parisa & Lahmiri, Salim, 2022. "The effect of COVID-19 pandemic on return-volume and return-volatility relationships in cryptocurrency markets," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. Ngene, Geoffrey M. & Mungai, Ann Nduati, 2022. "Stock returns, trading volume, and volatility: The case of African stock markets," International Review of Financial Analysis, Elsevier, vol. 82(C).
    17. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    18. Kausik Chaudhuri & Alok Kumar, 2015. "A Markov-Switching Model for Indian Stock Price and Volume," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(3), pages 239-257, December.
    19. You‐How Go & Wee‐Yeap Lau, 2023. "What do we know about informational efficiency? Three puzzles and the new direction forward," Journal of Economic Surveys, Wiley Blackwell, vol. 37(4), pages 1489-1525, September.
    20. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:57:y:2023:i:6:d:10.1007_s11135-022-01605-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.