IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Universal price impact functions of individual trades in an order-driven market

  • Wei-Xing Zhou
Registered author(s):

    The trade size ω has a direct impact on the price formation of the stock traded. Econophysical analyses of transaction data for the US and Australian stock markets have uncovered market-specific scaling laws, where a master curve of price impact can be obtained in each market when stock capitalization C is included as an argument in the scaling relation. However, the rationale of introducing stock capitalization in the scaling is unclear and the anomalous negative correlation between price change r and trade size ω for small trades is unexplained. Here we show that these issues can be addressed by taking into account the aggressiveness of orders that result in trades together with a proper normalization technique. Using order book data from the Chinese market, we show that trades from filled and partially filled limit orders have very different price impacts. The price impact of trades from partially filled orders is constant when the volume is not too large, while that of filled orders shows power-law behavior r  ∼ ω-super-α with α ≈ 2/3. When returns and volumes are normalized by stock-dependent averages, capitalization-independent scaling laws emerge for both types of trades. However, no scaling relation in terms of stock capitalization can be constructed. In addition, the relation α = α ω /α r is verified for some individual stocks and for the whole data set containing all stocks using partially filled trades, where α ω and α r are the tail exponents of trade sizes and returns. These observations also enable us to explain the anomalous negative correlation between r and ω for small-size trades.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

    Volume (Year): 12 (2012)
    Issue (Month): 8 (June)
    Pages: 1253-1263

    in new window

    Handle: RePEc:taf:quantf:v:12:y:2012:i:8:p:1253-1263
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:8:p:1253-1263. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.