IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0309233.html
   My bibliography  Save this paper

The Predictive Power of Zero Intelligence in Financial Markets

Author

Listed:
  • J. Doyne Farmer
  • Paolo Patelli
  • Ilija I. Zovko

Abstract

Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where, for some purposes, constraints imposed by market institutions dominate intelligent agent behavior. We use data from the London Stock Exchange to test a simple model in which zero intelligence agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction, and yields simple laws relating order arrival rates to statistical properties of the market. We test the validity of these laws in explaining the cross-sectional variation for eleven stocks. The model explains 96% of the variance of the bid-ask spread, and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The non-dimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view because it demonstrates the existence of simple laws relating prices to order flows, and in a broader context, because it suggests that there are circumstances where institutions are more important than strategic considerations.

Suggested Citation

  • J. Doyne Farmer & Paolo Patelli & Ilija I. Zovko, 2003. "The Predictive Power of Zero Intelligence in Financial Markets," Papers cond-mat/0309233, arXiv.org, revised Feb 2004.
  • Handle: RePEc:arx:papers:cond-mat/0309233
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0309233
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    2. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    3. Challet, Damien & Stinchcombe, Robin, 2001. "Analyzing and modeling 1+1d markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(1), pages 285-299.
    4. Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, A. Craig, 1992. "An ordered probit analysis of transaction stock prices," Journal of Financial Economics, Elsevier, vol. 31(3), pages 319-379, June.
    5. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    6. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    7. Bollerslev, Tim & Domowitz, Ian & Wang, Jianxin, 1997. "Order flow and the bid-ask spread: An empirical probability model of screen-based trading," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1471-1491, June.
    8. Mendelson, Haim, 1982. "Market Behavior in a Clearing House," Econometrica, Econometric Society, vol. 50(6), pages 1505-1524, November.
    9. Domowitz, Ian & Wang, Jianxin, 1994. "Auctions as algorithms : Computerized trade execution and price discovery," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 29-60, January.
    10. Frantisek Slanina, 2001. "Mean-field approximation for a limit order driven market model," Papers cond-mat/0104547, arXiv.org, revised Aug 2001.
    11. Vasiliki Plerou & Parameswaran Gopikrishnan & Xavier Gabaix & H. Eugene Stanley, 2001. "Quantifying Stock Price Response to Demand Fluctuations," Papers cond-mat/0106657, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0309233. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.