IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v34y2016i11d10.1007_s40273-016-0432-x.html
   My bibliography  Save this article

Estimating Marginal Healthcare Costs Using Genetic Variants as Instrumental Variables: Mendelian Randomization in Economic Evaluation

Author

Listed:
  • Padraig Dixon

    (University of Bristol)

  • George Davey Smith

    (University of Bristol
    MRC Integrative Epidemiology Unit at the University of Bristol)

  • Stephanie von Hinke

    (University of Bristol)

  • Neil M. Davies

    (University of Bristol
    MRC Integrative Epidemiology Unit at the University of Bristol)

  • William Hollingworth

    (University of Bristol)

Abstract

Accurate measurement of the marginal healthcare costs associated with different diseases and health conditions is important, especially for increasingly prevalent conditions such as obesity. However, existing observational study designs cannot identify the causal impact of disease on healthcare costs. This paper explores the possibilities for causal inference offered by Mendelian randomization, a form of instrumental variable analysis that uses genetic variation as a proxy for modifiable risk exposures, to estimate the effect of health conditions on cost. Well-conducted genome-wide association studies provide robust evidence of the associations of genetic variants with health conditions or disease risk factors. The subsequent causal effects of these health conditions on cost can be estimated using genetic variants as instruments for the health conditions. This is because the approximately random allocation of genotypes at conception means that many genetic variants are orthogonal to observable and unobservable confounders. Datasets with linked genotypic and resource use information obtained from electronic medical records or from routinely collected administrative data are now becoming available and will facilitate this form of analysis. We describe some of the methodological issues that arise in this type of analysis, which we illustrate by considering how Mendelian randomization could be used to estimate the causal impact of obesity, a complex trait, on healthcare costs. We describe some of the data sources that could be used for this type of analysis. We conclude by considering the challenges and opportunities offered by Mendelian randomization for economic evaluation.

Suggested Citation

  • Padraig Dixon & George Davey Smith & Stephanie von Hinke & Neil M. Davies & William Hollingworth, 2016. "Estimating Marginal Healthcare Costs Using Genetic Variants as Instrumental Variables: Mendelian Randomization in Economic Evaluation," PharmacoEconomics, Springer, vol. 34(11), pages 1075-1086, November.
  • Handle: RePEc:spr:pharme:v:34:y:2016:i:11:d:10.1007_s40273-016-0432-x
    DOI: 10.1007/s40273-016-0432-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-016-0432-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-016-0432-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephanie von Hinke Kessler Scholder & George Davey Smith & Debbie A. Lawlor & Carol Propper & Frank Windmeijer, 2011. "Mendelian randomization: the use of genes in instrumental variable analyses," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 893-896, August.
    2. Donal O’Neill & Olive Sweetman, 2013. "The consequences of measurement error when estimating the impact of obesity on income," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 2(1), pages 1-20, December.
    3. von Hinke Kessler Scholder, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2013. "Child height, health and human capital: Evidence using genetic markers," European Economic Review, Elsevier, vol. 57(C), pages 1-22.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Chernew, Michael E. & Newhouse, Joseph P., 2011. "Health Care Spending Growth," Handbook of Health Economics, in: Mark V. Pauly & Thomas G. Mcguire & Pedro P. Barros (ed.), Handbook of Health Economics, volume 2, chapter 0, pages 1-43, Elsevier.
    6. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    7. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, Decembrie.
    8. Stephanie Hinke Kessler Scholder & George L. Wehby & Sarah Lewis & Luisa Zuccolo, 2014. "Alcohol Exposure In Utero and Child Academic Achievement," Economic Journal, Royal Economic Society, vol. 0(576), pages 634-667, May.
    9. Cawley, John & Meyerhoefer, Chad, 2012. "The medical care costs of obesity: An instrumental variables approach," Journal of Health Economics, Elsevier, vol. 31(1), pages 219-230.
    10. Drummond, Michael F. & Sculpher, Mark J. & Claxton, Karl & Stoddart, Greg L. & Torrance, George W., 2015. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 4, number 9780199665884, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hazewinkel, Audinga-Dea & Richmond, Rebecca C. & Wade, Kaitlin H. & Dixon, Padraig, 2022. "Mendelian randomization analysis of the causal impact of body mass index and waist-hip ratio on rates of hospital admission," Economics & Human Biology, Elsevier, vol. 44(C).
    2. Black, Nicole & Hughes, Robert & Jones, Andrew M., 2018. "The health care costs of childhood obesity in Australia: An instrumental variables approach," Economics & Human Biology, Elsevier, vol. 31(C), pages 1-13.
    3. Dixon, Padraig & Harrison, Sean & Hollingworth, William & Davies, Neil M. & Davey Smith, George, 2022. "Estimating the causal effect of liability to disease on healthcare costs using Mendelian Randomization," Economics & Human Biology, Elsevier, vol. 46(C).
    4. Dixon, Padraig & Hollingworth, William & Harrison, Sean & Davies, Neil M. & Davey Smith, George, 2020. "Mendelian Randomization analysis of the causal effect of adiposity on hospital costs," Journal of Health Economics, Elsevier, vol. 70(C).
    5. Bozzi, Debra G. & Nicholas, Lauren Hersch, 2021. "A Causal Estimate of Long-Term Health Care Spending Attributable to Body Mass Index Among Adults," Economics & Human Biology, Elsevier, vol. 41(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dixon, Padraig & Hollingworth, William & Harrison, Sean & Davies, Neil M. & Davey Smith, George, 2020. "Mendelian Randomization analysis of the causal effect of adiposity on hospital costs," Journal of Health Economics, Elsevier, vol. 70(C).
    2. Barban, Nicola & De Cao, Elisabetta & Oreffice, Sonia & Quintana-Domeque, Climent, 2021. "The effect of education on spousal education: A genetic approach," Labour Economics, Elsevier, vol. 71(C).
    3. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    4. Hazewinkel, Audinga-Dea & Richmond, Rebecca C. & Wade, Kaitlin H. & Dixon, Padraig, 2022. "Mendelian randomization analysis of the causal impact of body mass index and waist-hip ratio on rates of hospital admission," Economics & Human Biology, Elsevier, vol. 44(C).
    5. von Hinke Kessler Scholder, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2012. "The effect of fat mass on educational attainment: Examining the sensitivity to different identification strategies," Economics & Human Biology, Elsevier, vol. 10(4), pages 405-418.
    6. von Hinke Kessler Scholder, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2013. "Child height, health and human capital: Evidence using genetic markers," European Economic Review, Elsevier, vol. 57(C), pages 1-22.
    7. Lucas Hafner & Harald Tauchmann & Ansgar Wübker, 2021. "Does moderate weight loss affect subjective health perception in obese individuals? Evidence from field experimental data," Empirical Economics, Springer, vol. 61(4), pages 2293-2333, October.
    8. Nicola Barban & Elisabetta De Cao & Sonia Oreffice & Climent Quintana-Domeque, 2016. "Assortative Mating on Education: A Genetic Assessment," Working Papers 2016-034, Human Capital and Economic Opportunity Working Group.
    9. Daiji Kawaguchi & Jungmin Lee & Ming‐Jen Lin & Izumi Yokoyama, 2023. "Is Asian flushing syndrome a disadvantage in the labor market?," Health Economics, John Wiley & Sons, Ltd., vol. 32(7), pages 1478-1503, July.
    10. Dixon, Padraig & Harrison, Sean & Hollingworth, William & Davies, Neil M. & Davey Smith, George, 2022. "Estimating the causal effect of liability to disease on healthcare costs using Mendelian Randomization," Economics & Human Biology, Elsevier, vol. 46(C).
    11. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    12. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    13. Cawley, John & Han, Euna & Kim, Jiyoon & Norton, Edward C., 2023. "Genetic nurture in educational attainment," Economics & Human Biology, Elsevier, vol. 49(C).
    14. Jun Wang & Qihui Chen & Gang Chen & Yingxiang Li & Guoshu Kong & Chen Zhu, 2020. "What is creating the height premium? New evidence from a Mendelian randomization analysis in China," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    15. Hossein Haji Ali Afzali & Laura Bojke & Jonathan Karnon, 2018. "Model Structuring for Economic Evaluations of New Health Technologies," PharmacoEconomics, Springer, vol. 36(11), pages 1309-1319, November.
    16. Salah Ghabri & Françoise F. Hamers & Jean Michel Josselin, 2016. "Exploring Uncertainty in Economic Evaluations of Drugs and Medical Devices: Lessons from the First Review of Manufacturers’ Submissions to the French National Authority for Health," PharmacoEconomics, Springer, vol. 34(6), pages 617-624, June.
    17. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    18. Amr Makady & Ard Veelen & Páll Jonsson & Owen Moseley & Anne D’Andon & Anthonius Boer & Hans Hillege & Olaf Klungel & Wim Goettsch, 2018. "Using Real-World Data in Health Technology Assessment (HTA) Practice: A Comparative Study of Five HTA Agencies," PharmacoEconomics, Springer, vol. 36(3), pages 359-368, March.
    19. Si Wang & Qingqing Yang, 2022. "Does weight impact adolescent mental health? Evidence from China," Health Economics, John Wiley & Sons, Ltd., vol. 31(10), pages 2269-2286, October.
    20. John Cawley & Alex Susskind & Barton Willage, 2020. "The Impact of Information Disclosure on Consumer Behavior: Evidence from a Randomized Field Experiment of Calorie Labels on Restaurant Menus," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(4), pages 1020-1042, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:34:y:2016:i:11:d:10.1007_s40273-016-0432-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.