IDEAS home Printed from https://ideas.repec.org/a/spr/eujhec/v20y2019i3d10.1007_s10198-018-1013-z.html
   My bibliography  Save this article

Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration

Author

Listed:
  • Qi Cao

    (University of Groningen
    University of Groningen, University Medical Center Groningen)

  • Erik Buskens

    (University of Groningen, University Medical Center Groningen)

  • Hans L. Hillege

    (University of Groningen, University Medical Center Groningen
    University of Groningen, University Medical Center Groningen, Groningen)

  • Tiny Jaarsma

    (Linköping University)

  • Maarten Postma

    (University of Groningen
    University of Groningen, University Medical Center Groningen
    University of Groningen, University Medical Center Groningen (UMCG)
    University of Groningen, University Medical Center Groningen (UMCG))

  • Douwe Postmus

    (University of Groningen, University Medical Center Groningen)

Abstract

Objectives We sought to explore to what extent the use of Subpopulation Treatment Effect Pattern Plot (STEPP) may help to identify efficient treatment allocation strategy. Methods The analysis was based on data from the COACH study, in which 1023 patients with heart failure were randomly assigned to three treatments: care-as-usual, basic support, and intensive support. First, using predicted 18-month mortality risk as the stratification basis, a suitable strategy for assigning different treatments to different risk groups of patients was developed. To that end, a graphical exploration of the difference in net monetary benefit (NMB) across treatment regimens and baseline risk was used. Next, the efficiency gains resulting from this proposed subgroup strategy were quantified by computing the difference in NMB between our stratified approach and the best performing population-wide strategy. Results The analysis using STEPPs suggested that a differentiated approach, based on offering intensive support to low-risk patients (18-month mortality risk ≤ 0.16) and basic support to intermediate- to high-risk patients (18-month mortality risk > 0.16) would be an economically efficient treatment allocation strategy. This was confirmed in the subsequent cost-effectiveness analysis, where the average gain in NMB resulting from the proposed stratified approach compared to basic support for all was found to be €1312 (95% CI €390–€2346) per patient. Conclusions STEPP provides a systematic approach to assess the interaction between baseline risk and the difference in NMB between competing interventions and to identify cutoffs to stratify patients in a health economically optimal manner.

Suggested Citation

  • Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
  • Handle: RePEc:spr:eujhec:v:20:y:2019:i:3:d:10.1007_s10198-018-1013-z
    DOI: 10.1007/s10198-018-1013-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10198-018-1013-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10198-018-1013-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew R. Willan & Andrew H. Briggs & Jeffrey S. Hoch, 2004. "Regression methods for covariate adjustment and subgroup analysis for non‐censored cost‐effectiveness data," Health Economics, John Wiley & Sons, Ltd., vol. 13(5), pages 461-475, May.
    2. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, November.
    3. Douglas Coyle & Martin J. Buxton & Bernie J. O'Brien, 2003. "Stratified cost‐effectiveness analysis: a framework for establishing efficient limited use criteria," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 421-427, May.
    4. George Miller & Stephen Randolph & Emma Forkner & Brad Smith & Autumn Dawn Galbreath, 2009. "Long-Term Cost-Effectiveness of Disease Management in Systolic Heart Failure," Medical Decision Making, , vol. 29(3), pages 325-333, May.
    5. Drummond, Michael F. & Sculpher, Mark J. & Claxton, Karl & Stoddart, Greg L. & Torrance, George W., 2015. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 4, number 9780199665884, November.
    6. Janneke Grutters & Mark Sculpher & Andrew Briggs & Johan Severens & Math Candel & James Stahl & Dirk Ruysscher & Albert Boer & Bram Ramaekers & Manuela Joore, 2013. "Acknowledging Patient Heterogeneity in Economic Evaluation," PharmacoEconomics, Springer, vol. 31(2), pages 111-123, February.
    7. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
    8. Anirban Basu & David Meltzer, 2007. "Value of Information on Preference Heterogeneity and Individualized Care," Medical Decision Making, , vol. 27(2), pages 112-127, March.
    9. Jeffrey S. Hoch & Andrew H. Briggs & Andrew R. Willan, 2002. "Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 415-430, July.
    10. Qi Cao & Erik Buskens & Talitha Feenstra & Tiny Jaarsma & Hans Hillege & Douwe Postmus, 2016. "Continuous-Time Semi-Markov Models in Health Economic Decision Making," Medical Decision Making, , vol. 36(1), pages 59-71, January.
    11. Rena Conti & David L. Veenstra & Katrina Armstrong & Lawrence J. Lesko & Scott D. Grosse, 2010. "Personalized Medicine and Genomics: Challenges and Opportunities in Assessing Effectiveness, Cost-Effectiveness, and Future Research Priorities," Medical Decision Making, , vol. 30(3), pages 328-340, May.
    12. Manuel A. Espinoza & Andrea Manca & Karl Claxton & Mark J. Sculpher, 2014. "The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis," Medical Decision Making, , vol. 34(8), pages 951-964, November.
    13. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Hutton, 2012. "‘Health Economics’ and the evolution of economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 21(1), pages 13-18, January.
    2. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    3. Carmen Selva-Sevilla & Elena Conde-Montero & Manuel Gerónimo-Pardo, 2020. "Bayesian Regression Model for a Cost-Utility and Cost-Effectiveness Analysis Comparing Punch Grafting Versus Usual Care for the Treatment of Chronic Wounds," IJERPH, MDPI, vol. 17(11), pages 1-21, May.
    4. Kasper M. Johannesen & Karl Claxton & Mark J. Sculpher & Allan J. Wailoo, 2018. "How to design the cost‐effectiveness appraisal process of new healthcare technologies to maximise population health: A conceptual framework," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 41-54, February.
    5. Matthew Franklin & James Lomas & Simon Walker & Tracey Young, 2019. "An Educational Review About Using Cost Data for the Purpose of Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 37(5), pages 631-643, May.
    6. Janneke Grutters & Mark Sculpher & Andrew Briggs & Johan Severens & Math Candel & James Stahl & Dirk Ruysscher & Albert Boer & Bram Ramaekers & Manuela Joore, 2013. "Acknowledging Patient Heterogeneity in Economic Evaluation," PharmacoEconomics, Springer, vol. 31(2), pages 111-123, February.
    7. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    8. Anna Heath & Petros Pechlivanoglou, 2022. "Prioritizing Research in an Era of Personalized Medicine: The Potential Value of Unexplained Heterogeneity," Medical Decision Making, , vol. 42(5), pages 649-660, July.
    9. Manuel A. Espinoza & Andrea Manca & Karl Claxton & Mark J. Sculpher, 2014. "The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis," Medical Decision Making, , vol. 34(8), pages 951-964, November.
    10. Gomes, M & Grieve, R, 2011. "Estimating the Effects of Friendship Networks on Health Behaviors of Adolescents," Health, Econometrics and Data Group (HEDG) Working Papers 11/14, HEDG, c/o Department of Economics, University of York.
    11. Richard M. Nixon & Simon G. Thompson, 2005. "Methods for incorporating covariate adjustment, subgroup analysis and between‐centre differences into cost‐effectiveness evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 14(12), pages 1217-1229, December.
    12. Carl Bonander & Mikael Svensson, 2021. "Using causal forests to assess heterogeneity in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 30(8), pages 1818-1832, August.
    13. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    14. Abualbishr Alshreef & Allan J. Wailoo & Steven R. Brown & James P. Tiernan & Angus J. M. Watson & Katie Biggs & Mike Bradburn & Daniel Hind, 2017. "Cost-Effectiveness of Haemorrhoidal Artery Ligation versus Rubber Band Ligation for the Treatment of Grade II–III Haemorrhoids: Analysis Using Evidence from the HubBLe Trial," PharmacoEconomics - Open, Springer, vol. 1(3), pages 175-184, September.
    15. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    16. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    17. Andrea Manca & Neil Hawkins & Mark J. Sculpher, 2005. "Estimating mean QALYs in trial‐based cost‐effectiveness analysis: the importance of controlling for baseline utility," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 487-496, May.
    18. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    19. Charles F. Manski, 2022. "Patient‐centered appraisal of race‐free clinical risk assessment," Health Economics, John Wiley & Sons, Ltd., vol. 31(10), pages 2109-2114, October.
    20. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eujhec:v:20:y:2019:i:3:d:10.1007_s10198-018-1013-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.