IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v42y2024i4d10.1007_s40273-023-01341-z.html
   My bibliography  Save this article

A Guide to an Iterative Approach to Model-Based Decision Making in Health and Medicine: An Iterative Decision-Making Framework

Author

Listed:
  • Natalia Kunst

    (University of York
    Yale School of Public Health
    University of Oslo)

  • Emily A. Burger

    (University of Oslo
    Harvard T.H. Chan School of Public Health)

  • Veerle M. H. Coupé

    (Amsterdam University Medical Centers)

  • Karen M. Kuntz

    (University of Minnesota)

  • Eline Aas

    (University of Oslo
    Norwegian Institute of Public Health)

Abstract

Decision makers frequently face decisions about optimal resource allocation. A model-based economic evaluation can be used to guide decision makers in their choices by systematically evaluating the magnitude of expected health effects and costs of decision options and by making trade-offs explicit. We provide a guide to an iterative approach to the medical decision-making process by following a coherent framework, and outline the overarching iterative steps of model-based decision making. We systematized the framework by performing three steps. First, we compiled the existing guidelines provided by the ISPOR-SMDM Modeling Good Research Practices Task Force, and the ISPOR Value of Information Task Force. Second, we identified other previous work related to frameworks and guidelines for model-based decision analyses through a literature search in PubMed. Third, we assessed the role of the evidence and iterative process in decision making and formalized key steps in a model-based decision-making framework. We provide guidance on an iterative approach to medical decision making by applying the compiled iterative model-based decision-making framework. The framework formally combines the decision problem conceptualization (Part I), the model conceptualization and development (Part II), and the process of model-based decision analysis (Part III). Following the overarching steps of the framework ensures compliance to the principles of evidence-based medicine and regular updates of the evidence, given that value of information analysis represents an essential component of model-based decision analysis in the framework. Following the provided guide and the steps outlined in the framework can help inform various health care decisions, and therefore it has the potential to improve decision making.

Suggested Citation

  • Natalia Kunst & Emily A. Burger & Veerle M. H. Coupé & Karen M. Kuntz & Eline Aas, 2024. "A Guide to an Iterative Approach to Model-Based Decision Making in Health and Medicine: An Iterative Decision-Making Framework," PharmacoEconomics, Springer, vol. 42(4), pages 363-371, April.
  • Handle: RePEc:spr:pharme:v:42:y:2024:i:4:d:10.1007_s40273-023-01341-z
    DOI: 10.1007/s40273-023-01341-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-023-01341-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-023-01341-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher J.L. Murray & David B. Evans & Arnab Acharya & Rob M.P.M. Baltussen, 2000. "Development of WHO guidelines on generalized cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 9(3), pages 235-251, April.
    2. Elisabeth Fenwick & Karl Claxton & Mark Sculpher, 2005. "The value of implementation and the value of information: combined and uneven development," Working Papers 005cherp, Centre for Health Economics, University of York.
    3. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, Decembrie.
    4. Douglas Coyle & Martin J. Buxton & Bernie J. O'Brien, 2003. "Stratified cost‐effectiveness analysis: a framework for establishing efficient limited use criteria," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 421-427, May.
    5. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    6. Drummond, Michael F. & Sculpher, Mark J. & Claxton, Karl & Stoddart, Greg L. & Torrance, George W., 2015. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 4, number 9780199665884, Decembrie.
    7. Garber, Alan M. & Phelps, Charles E., 1997. "Economic foundations of cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 16(1), pages 1-31, February.
    8. P. Sendi & A. Gafni & S. Birch, 2002. "Opportunity costs and uncertainty in the economic evaluation of health care interventions," Health Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-31, January.
    9. Williams, Iestyn & Bryan, Stirling, 2007. "Understanding the limited impact of economic evaluation in health care resource allocation: A conceptual framework," Health Policy, Elsevier, vol. 80(1), pages 135-143, January.
    10. Karl Claxton & John Posnett, 1996. "An economic approach to clinical trial design and research priority‐setting," Health Economics, John Wiley & Sons, Ltd., vol. 5(6), pages 513-524, November.
    11. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    12. Elisabeth Fenwick & Karl Claxton & Mark Sculpher, 2008. "The Value of Implementation and the Value of Information: Combined and Uneven Development," Medical Decision Making, , vol. 28(1), pages 21-32, January.
    13. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    2. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    3. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    4. Karl Claxton & Stephen Palmer & Louise Longworth & Laura Bojke & Susan Griffin & Claire McKenna & Marta Soares & Eldon Spackman & Jihee Youn, 2011. "Uncertainty, evidence and irrecoverable costs: Informing approval, pricing and research decisions for health technologies," Working Papers 069cherp, Centre for Health Economics, University of York.
    5. Anna Heath & Petros Pechlivanoglou, 2022. "Prioritizing Research in an Era of Personalized Medicine: The Potential Value of Unexplained Heterogeneity," Medical Decision Making, , vol. 42(5), pages 649-660, July.
    6. Manuel A. Espinoza & Andrea Manca & Karl Claxton & Mark J. Sculpher, 2014. "The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis," Medical Decision Making, , vol. 34(8), pages 951-964, November.
    7. Lazaros Andronis & Lucinda J. Billingham & Stirling Bryan & Nicholas D. James & Pelham M. Barton, 2016. "A Practical Application of Value of Information and Prospective Payback of Research to Prioritize Evaluative Research," Medical Decision Making, , vol. 36(3), pages 321-334, April.
    8. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    9. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    10. Jessica Ochalek & Karl Claxton & Paul Revill & Mark Sculpher & Alexandra Rollinger, 2016. "Supporting the development of an essential health package: principles and initial assessment for Malawi," Working Papers 136cherp, Centre for Health Economics, University of York.
    11. Nicky J. Welton & Jason J. Madan & Deborah M. Caldwell & Tim J. Peters & Anthony E. Ades, 2014. "Expected Value of Sample Information for Multi-Arm Cluster Randomized Trials with Binary Outcomes," Medical Decision Making, , vol. 34(3), pages 352-365, April.
    12. Hawre Jalal & Jeremy D. Goldhaber-Fiebert & Karen M. Kuntz, 2015. "Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling," Medical Decision Making, , vol. 35(5), pages 584-595, July.
    13. Anna Heath, 2022. "Calculating Expected Value of Sample Information Adjusting for Imperfect Implementation," Medical Decision Making, , vol. 42(5), pages 626-636, July.
    14. Elamin H. Elbasha, 2005. "Risk aversion and uncertainty in cost‐effectiveness analysis: the expected‐utility, moment‐generating function approach," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 457-470, May.
    15. A C Bouman & A J ten Cate-Hoek & B L T Ramaekers & M A Joore, 2015. "Sample Size Estimation for Non-Inferiority Trials: Frequentist Approach versus Decision Theory Approach," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    16. Joanna Thorn & Joanna Coast & Lazaros Andronis, 2016. "Interpretation of the Expected Value of Perfect Information and Research Recommendations," Medical Decision Making, , vol. 36(3), pages 285-295, April.
    17. Clara C. Zwack & Milad Haghani & Esther W. Bekker-Grob, 2024. "Research trends in contemporary health economics: a scientometric analysis on collective content of specialty journals," Health Economics Review, Springer, vol. 14(1), pages 1-30, December.
    18. Devin Incerti & Jeffrey R. Curtis & Jason Shafrin & Darius N. Lakdawalla & Jeroen P. Jansen, 2019. "A Flexible Open-Source Decision Model for Value Assessment of Biologic Treatment for Rheumatoid Arthritis," PharmacoEconomics, Springer, vol. 37(6), pages 829-843, June.
    19. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    20. Gemma E. Shields & Paul Clarkson & Ash Bullement & Warren Stevens & Mark Wilberforce & Tracey Farragher & Arpana Verma & Linda M. Davies, 2024. "Advances in Addressing Patient Heterogeneity in Economic Evaluation: A Review of the Methods Literature," PharmacoEconomics, Springer, vol. 42(7), pages 737-749, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:42:y:2024:i:4:d:10.1007_s40273-023-01341-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.