IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0130531.html
   My bibliography  Save this article

Sample Size Estimation for Non-Inferiority Trials: Frequentist Approach versus Decision Theory Approach

Author

Listed:
  • A C Bouman
  • A J ten Cate-Hoek
  • B L T Ramaekers
  • M A Joore

Abstract

Background: Non-inferiority trials are performed when the main therapeutic effect of the new therapy is expected to be not unacceptably worse than that of the standard therapy, and the new therapy is expected to have advantages over the standard therapy in costs or other (health) consequences. These advantages however are not included in the classic frequentist approach of sample size calculation for non-inferiority trials. In contrast, the decision theory approach of sample size calculation does include these factors. The objective of this study is to compare the conceptual and practical aspects of the frequentist approach and decision theory approach of sample size calculation for non-inferiority trials, thereby demonstrating that the decision theory approach is more appropriate for sample size calculation of non-inferiority trials. Methods: The frequentist approach and decision theory approach of sample size calculation for non-inferiority trials are compared and applied to a case of a non-inferiority trial on individually tailored duration of elastic compression stocking therapy compared to two years elastic compression stocking therapy for the prevention of post thrombotic syndrome after deep vein thrombosis. Results: The two approaches differ substantially in conceptual background, analytical approach, and input requirements. The sample size calculated according to the frequentist approach yielded 788 patients, using a power of 80% and a one-sided significance level of 5%. The decision theory approach indicated that the optimal sample size was 500 patients, with a net value of €92 million. Conclusions: This study demonstrates and explains the differences between the classic frequentist approach and the decision theory approach of sample size calculation for non-inferiority trials. We argue that the decision theory approach of sample size estimation is most suitable for sample size calculation of non-inferiority trials.

Suggested Citation

  • A C Bouman & A J ten Cate-Hoek & B L T Ramaekers & M A Joore, 2015. "Sample Size Estimation for Non-Inferiority Trials: Frequentist Approach versus Decision Theory Approach," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
  • Handle: RePEc:plo:pone00:0130531
    DOI: 10.1371/journal.pone.0130531
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130531
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130531&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0130531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Roberts & Louise B. Russell & A. David Paltiel & Michael Chambers & Phil McEwan & Murray Krahn, 2012. "Conceptualizing a Model," Medical Decision Making, , vol. 32(5), pages 678-689, September.
    2. David M. Eddy & William Hollingworth & J. Jaime Caro & Joel Tsevat & Kathryn M. McDonald & John B. Wong, 2012. "Model Transparency and Validation," Medical Decision Making, , vol. 32(5), pages 733-743, September.
    3. Patrick W. Sullivan & Julia F. Slejko & Mark J. Sculpher & Vahram Ghushchyan, 2011. "Catalogue of EQ-5D Scores for the United Kingdom," Medical Decision Making, , vol. 31(6), pages 800-804, November.
    4. Karl Claxton & Susan Griffin & Hendrik Koffijberg & Claire McKenna, 2013. "Expected health benefits of additional evidence: Principles, methods and applications," Working Papers 083cherp, Centre for Health Economics, University of York.
    5. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    6. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    7. Smith, Richard D. & Richardson, Jeff, 2005. "Can we estimate the `social' value of a QALY?: Four core issues to resolve," Health Policy, Elsevier, vol. 74(1), pages 77-84, September.
    8. Paul Kind & Geoffrey Hardman & Susan Macran, 1999. "UK population norms for EQ-5D," Working Papers 172chedp, Centre for Health Economics, University of York.
    9. Simon Eckermann & Andrew R. Willan, 2007. "Expected value of information and decision making in HTA," Health Economics, John Wiley & Sons, Ltd., vol. 16(2), pages 195-209, February.
    10. Karl Claxton & John Posnett, 1996. "An economic approach to clinical trial design and research priority‐setting," Health Economics, John Wiley & Sons, Ltd., vol. 5(6), pages 513-524, November.
    11. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    12. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hawre Jalal & Jeremy D. Goldhaber-Fiebert & Karen M. Kuntz, 2015. "Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling," Medical Decision Making, , vol. 35(5), pages 584-595, July.
    2. Jennifer Uyei & R. Scott Braithwaite, 2016. "Are There Scenarios When the Use of Non–Placebo-Control Groups in Experimental Trial Designs Increase Expected Value to Society?," Medical Decision Making, , vol. 36(1), pages 20-30, January.
    3. Haitham Tuffaha & Shelley Roberts & Wendy Chaboyer & Louisa Gordon & Paul Scuffham, 2015. "Cost-Effectiveness and Value of Information Analysis of Nutritional Support for Preventing Pressure Ulcers in High-risk Patients: Implement Now, Research Later," Applied Health Economics and Health Policy, Springer, vol. 13(2), pages 167-179, April.
    4. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    5. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    6. Mark Strong & Jeremy E. Oakley & Alan Brennan & Penny Breeze, 2015. "Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 35(5), pages 570-583, July.
    7. Josh J. Carlson & Rahber Thariani & Josh Roth & Julie Gralow & N. Lynn Henry & Laura Esmail & Pat Deverka & Scott D. Ramsey & Laurence Baker & David L. Veenstra, 2013. "Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics," Medical Decision Making, , vol. 33(4), pages 463-471, May.
    8. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.
    9. Manuel A. Espinoza & Andrea Manca & Karl Claxton & Mark J. Sculpher, 2014. "The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis," Medical Decision Making, , vol. 34(8), pages 951-964, November.
    10. David Glynn & Georgios Nikolaidis & Dina Jankovic & Nicky J. Welton, 2023. "Constructing Relative Effect Priors for Research Prioritization and Trial Design: A Meta-epidemiological Analysis," Medical Decision Making, , vol. 43(5), pages 553-563, July.
    11. Mathyn Vervaart & Mark Strong & Karl P. Claxton & Nicky J. Welton & Torbjørn Wisløff & Eline Aas, 2022. "An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial," Medical Decision Making, , vol. 42(5), pages 612-625, July.
    12. Lazaros Andronis & Lucinda J. Billingham & Stirling Bryan & Nicholas D. James & Pelham M. Barton, 2016. "A Practical Application of Value of Information and Prospective Payback of Research to Prioritize Evaluative Research," Medical Decision Making, , vol. 36(3), pages 321-334, April.
    13. Joanna Thorn & Joanna Coast & Lazaros Andronis, 2016. "Interpretation of the Expected Value of Perfect Information and Research Recommendations," Medical Decision Making, , vol. 36(3), pages 285-295, April.
    14. Andrew Willan & Simon Eckermann, 2012. "Value of Information and Pricing New Healthcare Interventions," PharmacoEconomics, Springer, vol. 30(6), pages 447-459, June.
    15. Andrew R. Willan & Simon Eckermann, 2012. "Accounting For Between‐Study Variation In Incremental Net Benefit In Value Of Information Methodology," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1183-1195, October.
    16. Eric Jutkowitz & Fernando Alarid-Escudero & Karen M. Kuntz & Hawre Jalal, 2019. "The Curve of Optimal Sample Size (COSS): A Graphical Representation of the Optimal Sample Size from a Value of Information Analysis," PharmacoEconomics, Springer, vol. 37(7), pages 871-877, July.
    17. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    18. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    19. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    20. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0130531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.