IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v42y2022i5p612-625.html
   My bibliography  Save this article

An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial

Author

Listed:
  • Mathyn Vervaart

    (Department of Health Management and Health Economics, University of Oslo, Oslo, Norway
    Norwegian Medicines Agency, Oslo, Norway)

  • Mark Strong

    (School of Health and Related Research, University of Sheffield, Sheffield, UK)

  • Karl P. Claxton

    (Centre for Health Economics, University of York, York, UK
    Department of Economics and Related Studies, University of York, York, UK)

  • Nicky J. Welton

    (Population Health Sciences, University of Bristol, Bristol, UK)

  • Torbjørn Wisløff

    (Department of Community Medicine, UiT The Arctic University of Norway, Oslo, Norway
    Norwegian Institute of Public Health, Oslo, Norway)

  • Eline Aas

    (Department of Health Management and Health Economics, University of Oslo, Oslo, Norway)

Abstract

Background Decisions about new health technologies are increasingly being made while trials are still in an early stage, which may result in substantial uncertainty around key decision drivers such as estimates of life expectancy and time to disease progression. Additional data collection can reduce uncertainty, and its value can be quantified by computing the expected value of sample information (EVSI), which has typically been described in the context of designing a future trial. In this article, we develop new methods for computing the EVSI of extending an existing trial’s follow-up, first for an assumed survival model and then extending to capture uncertainty about the true survival model. Methods We developed a nested Markov Chain Monte Carlo procedure and a nonparametric regression-based method. We compared the methods by computing single-model and model-averaged EVSI for collecting additional follow-up data in 2 synthetic case studies. Results There was good agreement between the 2 methods. The regression-based method was fast and straightforward to implement, and scales easily to include any number of candidate survival models in the model uncertainty case. The nested Monte Carlo procedure, on the other hand, was extremely computationally demanding when we included model uncertainty. Conclusions We present a straightforward regression-based method for computing the EVSI of extending an existing trial’s follow-up, both where a single known survival model is assumed and where we are uncertain about the true survival model. EVSI for ongoing trials can help decision makers determine whether early patient access to a new technology can be justified on the basis of the current evidence or whether more mature evidence is needed. Highlights Decisions about new health technologies are increasingly being made while trials are still in an early stage, which may result in substantial uncertainty around key decision drivers such as estimates of life-expectancy and time to disease progression. Additional data collection can reduce uncertainty, and its value can be quantified by computing the expected value of sample information (EVSI), which has typically been described in the context of designing a future trial. In this article, we have developed new methods for computing the EVSI of extending a trial’s follow-up, both where a single known survival model is assumed and where we are uncertain about the true survival model. We extend a previously described nonparametric regression-based method for computing EVSI, which we demonstrate in synthetic case studies is fast, straightforward to implement, and scales easily to include any number of candidate survival models in the EVSI calculations. The EVSI methods that we present in this article can quantify the need for collecting additional follow-up data before making an adoption decision given any decision-making context.

Suggested Citation

  • Mathyn Vervaart & Mark Strong & Karl P. Claxton & Nicky J. Welton & Torbjørn Wisløff & Eline Aas, 2022. "An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial," Medical Decision Making, , vol. 42(5), pages 612-625, July.
  • Handle: RePEc:sae:medema:v:42:y:2022:i:5:p:612-625
    DOI: 10.1177/0272989X211068019
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X211068019
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X211068019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sabine E. Grimm & Simon Dixon & John W. Stevens, 2017. "Assessing the Expected Value of Research Studies in Reducing Uncertainty and Improving Implementation Dynamics," Medical Decision Making, , vol. 37(5), pages 523-533, July.
    2. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2021. "Extrapolating Parametric Survival Models in Health Technology Assessment Using Model Averaging: A Simulation Study," Medical Decision Making, , vol. 41(4), pages 476-484, May.
    3. Simon Eckermann & Andrew R. Willan, 2008. "The Option Value of Delay in Health Technology Assessment," Medical Decision Making, , vol. 28(3), pages 300-305, May.
    4. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    5. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    6. Simon Eckermann & Andrew R. Willan, 2009. "Globally optimal trial design for local decision making," Health Economics, John Wiley & Sons, Ltd., vol. 18(2), pages 203-216, February.
    7. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2021. "Extrapolating Parametric Survival Models in Health Technology Assessment: A Simulation Study," Medical Decision Making, , vol. 41(1), pages 37-50, January.
    8. Simon Eckermann, 2017. "Health Economics from Theory to Practice," Springer Books, Springer, number 978-3-319-50613-5, September.
    9. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    10. Anna Heath & Natalia Kunst & Christopher Jackson & Mark Strong & Fernando Alarid-Escudero & Jeremy D. Goldhaber-Fiebert & Gianluca Baio & Nicolas A. Menzies & Hawre Jalal, 2020. "Calculating the Expected Value of Sample Information in Practice: Considerations from 3 Case Studies," Medical Decision Making, , vol. 40(3), pages 314-326, April.
    11. Christopher H. Jackson & Laura Bojke & Simon G. Thompson & Karl Claxton & Linda D. Sharples, 2011. "A Framework for Addressing Structural Uncertainty in Decision Models," Medical Decision Making, , vol. 31(4), pages 662-674, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathyn Vervaart & Eline Aas & Karl P. Claxton & Mark Strong & Nicky J. Welton & Torbjørn Wisløff & Anna Heath, 2023. "General-Purpose Methods for Simulating Survival Data for Expected Value of Sample Information Calculations," Medical Decision Making, , vol. 43(5), pages 595-609, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Heath, 2022. "Calculating Expected Value of Sample Information Adjusting for Imperfect Implementation," Medical Decision Making, , vol. 42(5), pages 626-636, July.
    2. Andrew Willan & Simon Eckermann, 2012. "Value of Information and Pricing New Healthcare Interventions," PharmacoEconomics, Springer, vol. 30(6), pages 447-459, June.
    3. David Glynn & Georgios Nikolaidis & Dina Jankovic & Nicky J. Welton, 2023. "Constructing Relative Effect Priors for Research Prioritization and Trial Design: A Meta-epidemiological Analysis," Medical Decision Making, , vol. 43(5), pages 553-563, July.
    4. A C Bouman & A J ten Cate-Hoek & B L T Ramaekers & M A Joore, 2015. "Sample Size Estimation for Non-Inferiority Trials: Frequentist Approach versus Decision Theory Approach," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    5. Andrew R. Willan & Simon Eckermann, 2012. "Accounting For Between‐Study Variation In Incremental Net Benefit In Value Of Information Methodology," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1183-1195, October.
    6. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    7. Andrew Willan, 2011. "Sample Size Determination for Cost-Effectiveness Trials," PharmacoEconomics, Springer, vol. 29(11), pages 933-949, November.
    8. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    9. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    10. Taihang Shao & Mingye Zhao & Leyi Liang & Lizheng Shi & Wenxi Tang, 2023. "Impact of Extrapolation Model Choices on the Structural Uncertainty in Economic Evaluations for Cancer Immunotherapy: A Case Study of Checkmate 067," PharmacoEconomics - Open, Springer, vol. 7(3), pages 383-392, May.
    11. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    12. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    13. Eric Jutkowitz & Fernando Alarid-Escudero & Hyon K. Choi & Karen M. Kuntz & Hawre Jalal, 2017. "Prioritizing Future Research on Allopurinol and Febuxostat for the Management of Gout: Value of Information Analysis," PharmacoEconomics, Springer, vol. 35(10), pages 1073-1085, October.
    14. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    15. Haitham Tuffaha & Claire Rothery & Natalia Kunst & Chris Jackson & Mark Strong & Stephen Birch, 2021. "A Review of Web-Based Tools for Value-of-Information Analysis," Applied Health Economics and Health Policy, Springer, vol. 19(5), pages 645-651, September.
    16. Mathyn Vervaart & Eline Aas & Karl P. Claxton & Mark Strong & Nicky J. Welton & Torbjørn Wisløff & Anna Heath, 2023. "General-Purpose Methods for Simulating Survival Data for Expected Value of Sample Information Calculations," Medical Decision Making, , vol. 43(5), pages 595-609, July.
    17. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    18. Mark Strong & Jeremy E. Oakley & Alan Brennan & Penny Breeze, 2015. "Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 35(5), pages 570-583, July.
    19. Anna Heath & Mark Strong & David Glynn & Natalia Kunst & Nicky J. Welton & Jeremy D. Goldhaber-Fiebert, 2022. "Simulating Study Data to Support Expected Value of Sample Information Calculations: A Tutorial," Medical Decision Making, , vol. 42(2), pages 143-155, February.
    20. Josh J. Carlson & Rahber Thariani & Josh Roth & Julie Gralow & N. Lynn Henry & Laura Esmail & Pat Deverka & Scott D. Ramsey & Laurence Baker & David L. Veenstra, 2013. "Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics," Medical Decision Making, , vol. 33(4), pages 463-471, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:42:y:2022:i:5:p:612-625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.