IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i1d10.1007_s00291-022-00690-z.html
   My bibliography  Save this article

Relevance of dynamic variables in multicategory choice models

Author

Listed:
  • Harald Hruschka

    (University of Regensburg)

Abstract

We investigate the relevance of dynamic variables that reflect the purchase history of a household as independent variables in multicategory choice models. To this end, we estimate both homogeneous and finite mixture variants of the multivariate logit model. We consider two types of dynamic variables. Variables of the first type, which previous publications on multicategory choice models have ignored, are exponentially smoothed category purchases, which we simply call category loyalties. Variables of the second type are log-transformed times since the last purchase of any category. Our results clearly show that adding dynamic variables improves statistical model performance with category loyalties being more important than log-transformed times. The majority of coefficients of marketing variables (features, displays, and price reductions), pairwise category interactions, and cross-category relations differ between models either including or excluding dynamic variables. We also measure the effect of marketing variables on purchase probabilities of the same category (own effects) and on purchase probabilities of other categories (cross effects). This exercise demonstrates that the model without dynamic variables tends to overestimate own effects of marketing variables in many product categories. This positive omitted variable bias provides another explanation for the well-known problem of “overpromotion” in retailing.

Suggested Citation

  • Harald Hruschka, 2024. "Relevance of dynamic variables in multicategory choice models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(1), pages 109-133, March.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:1:d:10.1007_s00291-022-00690-z
    DOI: 10.1007/s00291-022-00690-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-022-00690-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-022-00690-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:1:d:10.1007_s00291-022-00690-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.