IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v62y2025i3d10.1007_s12597-024-00852-3.html
   My bibliography  Save this article

Selecting the best way to forecast income in the banking industry using data mining methods, a case study

Author

Listed:
  • Alireza Jafari

    (University of Tehran)

  • Amir Aghsami

    (University of Tehran
    Ankara Yıldırım Beyazıt University)

  • Masoud Rabbani

    (University of Tehran)

Abstract

One of the most important topics in data science is the prediction topic. The prediction accuracy is often sought after in many articles, aiming to establish trust in the prediction results. Customer revenue prediction is deemed crucial in any industry, as awareness of future income allows for strategic development across various industry sectors. Traditionally, profits and losses were assessed retrospectively following a business event. However, today, future revenue can be predicted using data science concepts. Future revenue prediction can be achieved through the application of different types of data mining algorithms, each possessing its level of accuracy. In this article, the forecasting of bank customers’ revenue will be examined using various algorithms. To this end, different forecasting methods such as regression, decision tree, random forest, cart, etc., will be implemented, both with and without clustering, to identify the optimal approach for predicting customer revenue.

Suggested Citation

  • Alireza Jafari & Amir Aghsami & Masoud Rabbani, 2025. "Selecting the best way to forecast income in the banking industry using data mining methods, a case study," OPSEARCH, Springer;Operational Research Society of India, vol. 62(3), pages 1383-1422, September.
  • Handle: RePEc:spr:opsear:v:62:y:2025:i:3:d:10.1007_s12597-024-00852-3
    DOI: 10.1007/s12597-024-00852-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-024-00852-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-024-00852-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Praphula Kumar Jain & Waris Quamer & Rajendra Pamula, 2021. "Sports result prediction using data mining techniques in comparison with base line model," OPSEARCH, Springer;Operational Research Society of India, vol. 58(1), pages 54-70, March.
    2. Yan, Yuwei & Huang, Chuanchao & Wang, Qian & Hu, Bin, 2020. "Data mining of customer choice behavior in internet of things within relationship network," International Journal of Information Management, Elsevier, vol. 50(C), pages 566-574.
    3. Guerola-Navarro, Vicente & Oltra-Badenes, Raul & Gil-Gomez, Hermenegildo & Iturricha Fernández, Agustín, 2021. "Customer relationship management (CRM) and Innovation: A qualitative comparative analysis (QCA) in the search for improvements on the firm performance in winery sector," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    4. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    5. Ashis Kumar Chakraborty & Ritwika Chattopadhyay & Inder Kaur & Sayaran Mittra, 2022. "Optimization of the number of maintenance crew in a manufacturing unit," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 1-19, March.
    6. Nihat Altintas & Michael Trick, 2014. "A data mining approach to forecast behavior," Annals of Operations Research, Springer, vol. 216(1), pages 3-22, May.
    7. Niloofar Fadavi, 2022. "Subgame perfect Nash equilibrium for dynamic pricing competition with finite planning horizon," Papers 2208.02842, arXiv.org.
    8. Shirazi, Farid & Mohammadi, Mahbobeh, 2019. "A big data analytics model for customer churn prediction in the retiree segment," International Journal of Information Management, Elsevier, vol. 48(C), pages 238-253.
    9. Shiva Moslemi & Abolfazl Mirzazadeh & Gerhard-Wilhelm Weber & Mohammad Ali Sobhanallahi, 2022. "Integration of neural network and AP-NDEA model for performance evaluation of sustainable pharmaceutical supply chain," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1116-1157, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    2. Yen-Chun Chou & Howard Hao-Chun Chuang, 2018. "A predictive investigation of first-time customer retention in online reservation services," Service Business, Springer;Pan-Pacific Business Association, vol. 12(4), pages 685-699, December.
    3. Benjamin T. Hazen & Joseph B. Skipper & Christopher A. Boone & Raymond R. Hill, 2018. "Back in business: operations research in support of big data analytics for operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 201-211, November.
    4. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    5. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    6. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
    7. Liu, Zhenkun & Zhang, Ying & Abedin, Mohammad Zoynul & Wang, Jianzhou & Yang, Hufang & Gao, Yuyang & Chen, Yinghao, 2024. "Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    8. Amir Gandomi & Amirhossein Bazargan & Saeed Zolfaghari, 2019. "Designing competitive loyalty programs: a stochastic game-theoretic model to guide the choice of reward structure," Annals of Operations Research, Springer, vol. 280(1), pages 267-298, September.
    9. Lariviere, Bart & Van den Poel, Dirk, 2007. "Banking behaviour after the lifecycle event of "moving in together": An exploratory study of the role of marketing investments," European Journal of Operational Research, Elsevier, vol. 183(1), pages 345-369, November.
    10. K. Coussement & D. Van Den Poel, 2008. "Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/527, Ghent University, Faculty of Economics and Business Administration.
    11. Mirza Hassan Hosseini & Mahdi Rezaei, 2015. "Exploratory Study on Causes of Valuable Costumers Turnover in Irans Private Banking Industry (Case Study: Physician Specialists Society)," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 5(5), pages 251-260, May.
    12. Bazargan, Amirhossein & Karray, Salma & Zolfaghari, Saeed, 2017. "Modeling reward expiry for loyalty programs in a competitive market," International Journal of Production Economics, Elsevier, vol. 193(C), pages 352-364.
    13. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    14. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    15. Prinzie, Anita & Van den Poel, Dirk, 2006. "Investigating purchasing-sequence patterns for financial services using Markov, MTD and MTDg models," European Journal of Operational Research, Elsevier, vol. 170(3), pages 710-734, May.
    16. Vishal Shukla & Sanjeev Prashar & Bhartrihari Pandiya, 2022. "Is price a significant predictor of the churn behavior during the global pandemic? A predictive modeling on the telecom industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(4), pages 470-483, August.
    17. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    18. Rîpa Ioan Alexandru, 2022. "Customer relationship management in the international context – theoretical and practical considerations," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 16(1), pages 1060-1072, August.
    19. Ju, Yonghan & Jeon, Song Yi & Sohn, So Young, 2015. "Behavioral technology credit scoring model with time-dependent covariates for stress test," European Journal of Operational Research, Elsevier, vol. 242(3), pages 910-919.
    20. Jose Angelo Divino & Edna Souza Lima & Jaime Orrillo, 2013. "Interest rates and default in unsecured loan markets," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1925-1934, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:62:y:2025:i:3:d:10.1007_s12597-024-00852-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.