IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v99y2019i1d10.1007_s11069-019-03679-0.html
   My bibliography  Save this article

Allocating assistance after a catastrophe based on the dynamic assessment of indirect economic losses

Author

Listed:
  • Zhengtao Zhang

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences
    Beijing Normal University)

  • Ning Li

    (Beijing Normal University
    Beijing Normal University
    Beijing Normal University)

  • Hong Xu

    (Beijing Normal University)

  • Jieling Feng

    (Beijing Normal University
    Beijing Normal University)

  • Xi Chen

    (Beijing Normal University
    Beijing Normal University)

  • Chao Gao

    (Ningbo University)

  • Peng Zhang

    (The Armed Police Academy)

Abstract

In 2008, Wenchuan earthquake shook Sichuan Province in China. The questions of how to value the economic loss that would result if a catastrophe were to occur in Capital Beijing and how long the recovery period would last have long been topics of concern for the government and the public. This study envisions an earthquake similar to the Wenchuan earthquake occurring in Beijing and examines the differences in indirect economic loss and recovery periods between Beijing and the Wenchuan earthquake using the same loss rate. An improved input–output model is used to evaluate the indirect losses. The results show that (1) Beijing experiences greater indirect loss than Sichuan. When both regions suffer a direct loss of USD 100, Beijing suffers USD 12 more in indirect loss than does Sichuan. (2) The reconstruction period of Beijing is shortened by at least 5 months, and indirect loss is reduced by 27.1% if the assistance level increases from 120 to 150% of that provided to Sichuan. (3) High assistance efficiencies can effectively reduce total losses, but increasing the efficiency of strength is more efficient than improving the efficiency of time in Beijing. Five sectors in Beijing are firstly needed to be assisted to recover, which can help other sectors to recover more quickly and efficiently through industrial linkages. Dynamic assessment of indirect loss in this study may help the government better understand the quantitative impact of disasters and allocate assistance resources more efficiently in Beijing.

Suggested Citation

  • Zhengtao Zhang & Ning Li & Hong Xu & Jieling Feng & Xi Chen & Chao Gao & Peng Zhang, 2019. "Allocating assistance after a catastrophe based on the dynamic assessment of indirect economic losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 17-37, October.
  • Handle: RePEc:spr:nathaz:v:99:y:2019:i:1:d:10.1007_s11069-019-03679-0
    DOI: 10.1007/s11069-019-03679-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03679-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03679-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefanou, Spiro E. & Silva, Elvira, 2007. "AJAE Appendix: Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 89(2), pages 1-19, May.
    2. Michael Greenberg & Laura Solitare & Michael Frisch & Karen Lowrie, 1999. "Economic Impact of Accelerated Cleanup on Regions Surrounding the U.S.DOE's Major Nuclear Weapons Sites," Risk Analysis, John Wiley & Sons, vol. 19(4), pages 635-647, August.
    3. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    4. Elvira Silva & Spiro E. Stefanou, 2007. "Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 398-419.
    5. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528, Decembrie.
    6. International Finance Corporation & World Bank, "undated". "Doing Business in the Arab World 2012 : Doing Business in a More Transparent World," World Bank Publications - Reports 16303, The World Bank Group.
    7. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    8. Fu-bao Zhou & Xin-xin Wang & Ying-ke Liu, 2014. "Gas drainage efficiency: an input–output model for evaluating gas drainage projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 989-1005, November.
    9. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 83-116.
    10. Holden, Stein & Shiferaw, Bekele, 2004. "Land degradation, drought and food security in a less-favoured area in the Ethiopian highlands: a bio-economic model with market imperfections," Agricultural Economics, Blackwell, vol. 30(1), pages 31-49, January.
    11. International Finance Corporation & World Bank, 2012. "Doing Business 2012 : Doing Business in a More Transparent World," World Bank Publications - Books, The World Bank Group, number 5907, December.
    12. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    13. Jidong Wu & Ning Li & Stéphane Hallegatte & Peijun Shi & Aijun Hu & Xueqin Liu, 2012. "Regional indirect economic impact evaluation of the 2008 Wenchuan Earthquake," Post-Print hal-00716669, HAL.
    14. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    15. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    16. Wei Xie & Ning Li & Chunhua Li & Ji-dong Wu & Aijun Hu & Xiaolin Hao, 2014. "Quantifying cascading effects triggered by disrupted transportation due to the Great 2008 Chinese Ice Storm: implications for disaster risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 337-352, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanfang Lyu & Yun Xiang & Dong Wang, 2023. "Evaluating Indirect Economic Losses from Flooding Using Input–Output Analysis: An Application to China’s Jiangxi Province," IJERPH, MDPI, vol. 20(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    2. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    3. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    4. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    5. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    8. Ling Tan & Ji Guo & Selvarajah Mohanarajah & Kun Zhou, 2021. "Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2389-2417, July.
    9. Jie Zhang & Meng Lu & Lulu Zhang & Yadong Xue, 2021. "Assessing indirect economic losses of landslides along highways," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2775-2796, April.
    10. K. Jenkins, 2013. "Indirect economic losses of drought under future projections of climate change: a case study for Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1967-1986, December.
    11. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    12. Hampf, Benjamin, 2017. "Rational inefficiency, adjustment costs and sequential technologies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1095-1108.
    13. Yuchen Hu & Harvey Cutler & Yihua Mao, 2023. "Economic Loss Assessment for Losses Due to Earthquake under an Integrated Building, Lifeline, and Transportation Nexus: A Spatial Computable General Equilibrium Approach for Shelby County, TN," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    14. Adam Rose & Charles K. Huyck, 2016. "Improving Catastrophe Modeling for Business Interruption Insurance Needs," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1896-1915, October.
    15. Stéphane Hallegatte & Fanny Henriet & Jan Corfee-Morlot, 2011. "The economics of climate change impacts and policy benefits at city scale: a conceptual framework," Climatic Change, Springer, vol. 104(1), pages 51-87, January.
    16. Encarna Guillamon-Saorin & Magdalena Kapelko & Spiro E. Stefanou, 2018. "Corporate Social Responsibility and Operational Inefficiency: A Dynamic Approach," Sustainability, MDPI, vol. 10(7), pages 1-26, July.
    17. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    18. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    19. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    20. Magambo, Isaiah Hubert & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Dynamic Technical and Environmental Efficiency Performance of Large Gold Mines in Developing Countries," EconStor Preprints 235859, ZBW - Leibniz Information Centre for Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:99:y:2019:i:1:d:10.1007_s11069-019-03679-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.