IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i3d10.1007_s11009-013-9388-x.html
   My bibliography  Save this article

Telegraph Processes with Random Jumps and Complete Market Models

Author

Listed:
  • Nikita Ratanov

    (Universidad del Rosario)

Abstract

We propose a new generalisation of jump-telegraph process with variable velocities and jumps. Amplitude of the jumps and velocity values are random, and they depend on the time spent by the process in the previous state of the underlying Markov process. This construction is applied to markets modelling. The distribution densities and the moments satisfy some integral equations of the Volterra type. We use them for characterisation of the equivalent risk-neutral measure and for the expression of historical volatility in various settings. The fundamental equation is derived by similar arguments. Historical volatilities are computed numerically.

Suggested Citation

  • Nikita Ratanov, 2015. "Telegraph Processes with Random Jumps and Complete Market Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 677-695, September.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:3:d:10.1007_s11009-013-9388-x
    DOI: 10.1007/s11009-013-9388-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9388-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9388-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Di Crescenzo & Barbara Martinucci, 2013. "On the Generalized Telegraph Process with Deterministic Jumps," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 215-235, March.
    2. Nikita Ratanov, 2007. "A jump telegraph model for option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 575-583.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Gerald Cheang & Carl Chiarella, 2011. "A Modern View on Merton's Jump-Diffusion Model," Research Paper Series 287, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Nikita Ratanov, 2008. "Option Pricing Model Based on a Markov-modulated Diffusion with Jumps," Papers 0812.0761, arXiv.org.
    6. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ratanov, Nikita, 2015. "Hypo-exponential distributions and compound Poisson processes with alternating parameters," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 71-78.
    2. Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
    3. Antonio Crescenzo & Barbara Martinucci & Paola Paraggio & Shelemyahu Zacks, 2021. "Some Results on the Telegraph Process Confined by Two Non-Standard Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 837-858, September.
    4. Claudio Macci & Barbara Martinucci & Enrica Pirozzi, 2021. "Asymptotic Results for the Absorption Time of Telegraph Processes with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1077-1096, September.
    5. Nikita Ratanov, 2016. "Option Pricing Under Jump-Diffusion Processes with Regime Switching," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 829-845, September.
    6. Johan GB Beumee & Chris Cormack & Peyman Khorsand & Manish Patel, 2014. "Path Diffusion, Part I," Papers 1406.0077, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.
    2. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    3. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    4. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    5. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    6. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    7. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    8. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    9. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    10. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    11. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    12. Lo, Andrew W & Wang, Jiang, 1995. "Implementing Option Pricing Models When Asset Returns Are Predictable," Journal of Finance, American Finance Association, vol. 50(1), pages 87-129, March.
    13. Chenghu Ma, 2003. "Term Structure of Interest Rates in the Presence of Levy Jumps: The HJM Approach," Annals of Economics and Finance, Society for AEF, vol. 4(2), pages 401-426, November.
    14. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    15. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    16. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    17. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    18. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    19. Pedro Piccoli & Newton C. A. da Costa & Wesley Vieira da Silva & June A. W. Cruz, 2018. "Investor sentiment and the risk–return tradeoff in the Brazilian market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 599-618, November.
    20. Goykhman, Mikhail, 2017. "Wealth dynamics in a sentiment-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 132-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:3:d:10.1007_s11009-013-9388-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.