IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/287.html
   My bibliography  Save this paper

A Modern View on Merton's Jump-Diffusion Model

Author

Listed:

Abstract

Merton has provided a formula for the price of a European call option on a single stock where the stock price process contains a continuous Poisson jump component, in addition to a continuous log-normally distributed component. In Merton's analysis, the jump-risk is not priced. Thus the distribution of the jump-arrivals and the jump-sizes do not change under the change of measure. We go onto introduce a Radon-Nikodym derivative process that induces the change of measure from the market measure to an equivalent martingale measure. The choice of parameters in the Radon-Nikodym derivative allows us to price the option under different financial-economic scenarios. We introduce a hedging argument that eliminates the jump-risk in some sort of averaged sense, and derive an integro-partial differential equation of the option price that is related to the one obtained by Merton.

Suggested Citation

  • Gerald Cheang & Carl Chiarella, 2011. "A Modern View on Merton's Jump-Diffusion Model," Research Paper Series 287, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:287
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp287.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    2. Aase, Knut K., 1988. "Contingent claims valuation when the security price is a combination of an Ito process and a random point process," Stochastic Processes and their Applications, Elsevier, vol. 28(2), pages 185-220, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scalas, Enrico & Politi, Mauro, 2012. "A parsimonious model for intraday European option pricing," Economics Discussion Papers 2012-14, Kiel Institute for the World Economy (IfW).
    2. repec:wsi:ijtafx:v:18:y:2015:i:04:n:s0219024915500247 is not listed on IDEAS
    3. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.

    More about this item

    Keywords

    financial derivatives; compound Poisson processes; equivalent martingale measure; hedging portfolio;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:287. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.