IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Option Pricing Model Based on a Markov-modulated Diffusion with Jumps

  • Nikita Ratanov

The paper proposes a class of financial market models which are based on inhomogeneous telegraph processes and jump diffusions with alternating volatilities. It is assumed that the jumps occur when the tendencies and volatilities are switching. We argue that such a model captures well the stock price dynamics under periodic financial cycles. The distribution of this process is described in detail. For this model we obtain the structure of the set of martingale measures. This incomplete model can be completed by adding another asset based on the same sources of randomness. Explicit closed-form formulae for prices of the standard European options are obtained for the completed market model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/0812.0761
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 0812.0761.

as
in new window

Length:
Date of creation: Dec 2008
Date of revision:
Handle: RePEc:arx:papers:0812.0761
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  2. Alessandro De Gregorio & Stefano M. Iacus, 2007. "Change point estimation for the telegraph process observed at discrete times," Papers 0705.0503, arXiv.org.
  3. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  4. X. Guo, 2001. "Information and option pricings," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 38-44.
  5. Robert J. Elliott & John van der Hoek, 1997. "An application of hidden Markov models to asset allocation problems (*)," Finance and Stochastics, Springer, vol. 1(3), pages 229-238.
  6. Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
  7. Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
  8. M. Montero, 2008. "Renewal equations for option pricing," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 65(2), pages 295-306, September.
  9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  10. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
  11. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:0812.0761. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.