IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v35y2004i2p205-222.html
   My bibliography  Save this article

A link between wave governed random motions and ruin processes

Author

Listed:
  • Mazza, Christian
  • Rulliere, Didier

Abstract

This article establishes a link between hitting times associated with the risk process (time of ruin) and wave governed random motions, which are widely used in physics. Concerning risk theory, another link holds between processes corresponding to models called positive and negative risk sums. Some classical results appear to be strongly interconnected. An original algorithm is proposed for computing finite-time ruin probabilities in renewal non-Poissonian risk model with exponential claims. Concerning wave-governed random motions, we analyze the distribution of the maxima of the processes. New bounds are directly derived from risk theory and appear to be more accurate than the ones proposed recently in the probabilistic literature. Finally, we propose applications of these notions in finance.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
  • Handle: RePEc:eee:insuma:v:35:y:2004:i:2:p:205-222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(04)00092-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Foong, S. K. & Kanno, S., 1994. "Properties of the telegrapher's random process with or without a trap," Stochastic Processes and their Applications, Elsevier, vol. 53(1), pages 147-173, September.
    2. Rulliere, Didier & Loisel, Stephane, 2004. "Another look at the Picard-Lefevre formula for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, pages 187-203.
    3. Orsingher, Enzo, 1990. "Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 49-66, February.
    4. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 12(01), pages 22-26, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Insurance: Mathematics and Economics, Elsevier, pages 746-762.
    2. Alessandro De Gregorio & Stefano M. Iacus, 2007. "Change point estimation for the telegraph process observed at discrete times," Papers 0705.0503, arXiv.org.
    3. Nikita Ratanov, 2008. "Option Pricing Model Based on a Markov-modulated Diffusion with Jumps," Papers 0812.0761, arXiv.org.
    4. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    5. Christophette Blanchet-Scalliet & Diana Dorobantu & Didier Rullière, 2013. "The density of the ruin time for a renewal-reward process perturbed by a diffusion," Post-Print hal-00625099, HAL.
    6. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    7. Avanzi, Benjamin & Cheung, Eric C.K. & Wong, Bernard & Woo, Jae-Kyung, 2013. "On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency," Insurance: Mathematics and Economics, Elsevier, pages 98-113.
    8. Macci, Claudio, 2009. "Convergence of large deviation rates based on a link between wave governed random motions and ruin processes," Statistics & Probability Letters, Elsevier, pages 255-263.
    9. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Zhao, Shouqi, 2015. "On finite-time ruin probabilities in a generalized dual risk model with dependence," European Journal of Operational Research, Elsevier, vol. 242(1), pages 134-148.
    10. Dickson, David C.M. & Li, Shuanming, 2010. "Finite time ruin problems for the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 12-18, February.
    11. Borovkov, Konstantin A. & Dickson, David C.M., 2008. "On the ruin time distribution for a Sparre Andersen process with exponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1104-1108, June.
    12. Benjamin Avanzi & Jos'e-Luis P'erez & Bernard Wong & Kazutoshi Yamazaki, 2016. "On optimal joint reflective and refractive dividend strategies in spectrally positive L\'evy models," Papers 1607.01902, arXiv.org, revised Nov 2016.
    13. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, pages 280-290.
    14. Avanzi, Benjamin & Pérez, José-Luis & Wong, Bernard & Yamazaki, Kazutoshi, 2017. "On optimal joint reflective and refractive dividend strategies in spectrally positive Lévy models," Insurance: Mathematics and Economics, Elsevier, pages 148-162.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:35:y:2004:i:2:p:205-222. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.