IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i4d10.1007_s10959-024-01354-0.html
   My bibliography  Save this article

Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions

Author

Listed:
  • Jiang Hui

    (Nanjing University of Aeronautics and Astronautics)

  • Xu Lihu

    (University of Macau
    Zhuhai UM Science and Technology Research Institute)

  • Yang Qingshan

    (Northeast Normal University)

Abstract

In this paper, we establish the functional large deviation principle (LDP) for the Kac–Stroock approximations of a wild class of Gaussian processes constructed by telegraph types of integrals with $$L^2$$ L 2 -integrands under mild conditions and find the explicit form for their rate functions. Our investigation includes a broad range of kernels, such as those related to Brownian motions, fractional Brownian motions with whole Hurst parameters, and Ornstein–Uhlenbeck processes. Furthermore, we consider a class of non-Markovian stochastic differential equations driven by the Kac–Stroock approximation and establish their Freidlin–Wentzell type LDP. The rate function clearly indicates an interesting phase transition phenomenon as the approximating rate moves from one region to the other.

Suggested Citation

  • Jiang Hui & Xu Lihu & Yang Qingshan, 2024. "Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3015-3054, November.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01354-0
    DOI: 10.1007/s10959-024-01354-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01354-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01354-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Archil Gulisashvili, 2017. "Large deviation principle for Volterra type fractional stochastic volatility models," Papers 1710.10711, arXiv.org, revised Aug 2018.
    2. Foong, S. K. & Kanno, S., 1994. "Properties of the telegrapher's random process with or without a trap," Stochastic Processes and their Applications, Elsevier, vol. 53(1), pages 147-173, September.
    3. Bardina, Xavier & Márquez, Juan Pablo & Quer-Sardanyons, Lluís, 2020. "Weak approximation of the complex Brownian sheet from a Lévy sheet and applications to SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5735-5767.
    4. Cinque, Fabrizio & Orsingher, Enzo, 2021. "On the exact distributions of the maximum of the asymmetric telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 601-633.
    5. Peter Friz & Stefan Gerhold & Arpad Pinter, 2018. "Option pricing in the moderate deviations regime," Mathematical Finance, Wiley Blackwell, vol. 28(3), pages 962-988, July.
    6. Claudio Macci & Barbara Martinucci & Enrica Pirozzi, 2021. "Asymptotic Results for the Absorption Time of Telegraph Processes with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1077-1096, September.
    7. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    8. Guillin, Arnaud, 2001. "Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 287-313, April.
    9. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
    10. Orsingher, Enzo, 1990. "Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 49-66, February.
    11. Fontbona, Joaquin & Guérin, Hélène & Malrieu, Florent, 2016. "Long time behavior of telegraph processes under convex potentials," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3077-3101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.
    2. Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.
    3. Ratanov, Nikita, 2021. "On telegraph processes, their first passage times and running extrema," Statistics & Probability Letters, Elsevier, vol. 174(C).
    4. Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).
    5. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    6. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    7. Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023. "Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.
    8. Iacus, Stefano Maria, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 83-88, November.
    9. Peter K. Friz & Thomas Wagenhofer, 2023. "Reconstructing volatility: Pricing of index options under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 19-40, January.
    10. Cinque, Fabrizio & Orsingher, Enzo, 2021. "On the exact distributions of the maximum of the asymmetric telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 601-633.
    11. Cinque, Fabrizio & Orsingher, Enzo, 2023. "Random motions in R3 with orthogonal directions," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 173-200.
    12. Iuliano, Antonella & Macci, Claudio, 2023. "Asymptotic results for the absorption time of telegraph processes with a non-standard barrier at the origin," Statistics & Probability Letters, Elsevier, vol. 196(C).
    13. Martin Forde & Stefan Gerhold & Benjamin Smith, 2021. "Small‐time, large‐time, and H→0 asymptotics for the Rough Heston model," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 203-241, January.
    14. Peter K. Friz & Thomas Wagenhofer, 2022. "Reconstructing Volatility: Pricing of Index Options under Rough Volatility," Papers 2212.07817, arXiv.org.
    15. De Gregorio, Alessandro & Macci, Claudio, 2012. "Large deviation principles for telegraph processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1874-1882.
    16. Kolesnik, Alexander D. & Turbin, Anatoly F., 1998. "The equation of symmetric Markovian random evolution in a plane," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 67-87, June.
    17. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    18. Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
    19. Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
    20. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01354-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.