IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v336y2024i1d10.1007_s10479-023-05424-0.html
   My bibliography  Save this article

Large and moderate deviations for importance sampling in the Heston model

Author

Listed:
  • Marc Geha

    (Princeton University)

  • Antoine Jacquier

    (Imperial College London, and Alan Turing Institute)

  • Žan Žurič

    (Imperial College London)

Abstract

We provide a detailed importance sampling analysis for variance reduction in stochastic volatility models. The optimal change of measure is obtained using a variety of results from large and moderate deviations: small-time, large-time, small-noise. Specialising the results to the Heston model, we derive many closed-form solutions, making the whole approach easy to implement. We support our theoretical results with a detailed numerical analysis of the variance reduction gains.

Suggested Citation

  • Marc Geha & Antoine Jacquier & Žan Žurič, 2024. "Large and moderate deviations for importance sampling in the Heston model," Annals of Operations Research, Springer, vol. 336(1), pages 47-92, May.
  • Handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05424-0
    DOI: 10.1007/s10479-023-05424-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05424-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05424-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baldi, P. & Caramellino, L., 2011. "General Freidlin-Wentzell Large Deviations and positive diffusions," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1218-1229, August.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    4. Archil Gulisashvili, 2017. "Large deviation principle for Volterra type fractional stochastic volatility models," Papers 1710.10711, arXiv.org, revised Aug 2018.
    5. Antoine Jacquier & Mikko S. Pakkanen & Henry Stone, 2017. "Pathwise large deviations for the Rough Bergomi model," Papers 1706.05291, arXiv.org, revised Dec 2018.
    6. Teemu Pennanen, 2011. "Convex Duality in Stochastic Optimization and Mathematical Finance," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 340-362, May.
    7. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Christian Bayer & Peter K. Friz & Archil Gulisashvili & Blanka Horvath & Benjamin Stemper, 2017. "Short-time near-the-money skew in rough fractional volatility models," Papers 1703.05132, arXiv.org, revised Mar 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023. "Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.
    2. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    3. Peter K. Friz & Thomas Wagenhofer, 2023. "Reconstructing volatility: Pricing of index options under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 19-40, January.
    4. Peter K. Friz & Thomas Wagenhofer, 2022. "Reconstructing Volatility: Pricing of Index Options under Rough Volatility," Papers 2212.07817, arXiv.org.
    5. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    6. Gulisashvili, Archil, 2021. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 37-79.
    7. Gulisashvili, Archil, 2020. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3648-3686.
    8. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    9. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    10. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    11. Almeida, Thiago Ramos, 2024. "Estimating time-varying factors’ variance in the string-term structure model with stochastic volatility," Research in International Business and Finance, Elsevier, vol. 70(PA).
    12. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    13. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    14. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    15. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    16. Jaros{l}aw Gruszka & Janusz Szwabi'nski, 2023. "Portfolio Optimisation via the Heston Model Calibrated to Real Asset Data," Papers 2302.01816, arXiv.org.
    17. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    18. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    19. Tao Liu & Zixiao Zhao & Shiyi Ling & Heyang Chao & Hasan Fattahi Nafchi & Stanford Shateyi, 2024. "Efficient Scheme for the Economic Heston–Hull–White Problem Using Novel RBF-FD Coefficients Derived from Multiquadric Function Integrals," Mathematics, MDPI, vol. 12(14), pages 1-15, July.
    20. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05424-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.