IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.17220.html
   My bibliography  Save this paper

Maximum Likelihood Estimation for a Markov-Modulated Jump-Diffusion Model

Author

Listed:
  • Laura Eslava
  • Fernando Baltazar-Larios
  • Bor Reynoso

Abstract

We propose a method for obtaining maximum likelihood estimates (MLEs) of a Markov-Modulated Jump-Diffusion Model (MMJDM) when the data is a discrete time sample of the diffusion process, the jumps follow a Laplace distribution, and the parameters of the diffusion are controlled by a Markov Jump Process (MJP). The data can be viewed as incomplete observation of a model with a tractable likelihood function. Therefore we use the EM-algorithm to obtain MLEs of the parameters. We validate our method with simulated data. The motivation for obtaining estimates of this model is that stock prices have distinct drift and volatility at distinct periods of time. The assumption is that these phases are modulated by macroeconomic environments whose changes are given by discontinuities or jumps in prices. This model improves on the stock prices representation of classical models such as the model of Black and Scholes or Merton's Jump-Diffusion Model (JDM). We fit the model to the stock prices of Amazon and Netflix during a 15-years period and use our method to estimate the MLEs.

Suggested Citation

  • Laura Eslava & Fernando Baltazar-Larios & Bor Reynoso, 2022. "Maximum Likelihood Estimation for a Markov-Modulated Jump-Diffusion Model," Papers 2211.17220, arXiv.org.
  • Handle: RePEc:arx:papers:2211.17220
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.17220
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Baltazar-Larios & Luz Judith R. Esparza, 2022. "Statistical Inference for Partially Observed Markov-Modulated Diffusion Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 571-593, June.
    2. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. X. Guo, 2001. "Information and option pricings," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 38-44.
    6. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    7. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    8. Milan Kumar Das & Anindya Goswami & Nimit Rana, 2016. "Risk Sensitive Portfolio Optimization in a Jump Diffusion Model with Regimes," Papers 1603.09149, arXiv.org, revised Jan 2018.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    10. Massimo Costabile & Arturo Leccadito & Ivar Massabó & Emilio Russo, 2014. "A reduced lattice model for option pricing under regime-switching," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 667-690, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Ratanov, 2008. "Option Pricing Model Based on a Markov-modulated Diffusion with Jumps," Papers 0812.0761, arXiv.org.
    2. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    3. Ata Türkoğlu, 2016. "Normally distributed high-frequency returns: a subordination approach," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 389-409, March.
    4. Abootaleb Shirvani & Yuan Hu & Svetlozar T. Rachev & Frank J. Fabozzi, 2019. "Option Pricing with Mixed Levy Subordinated Price Process and Implied Probability Weighting Function," Papers 1910.05902, arXiv.org, revised Apr 2020.
    5. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    6. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    7. Milan Kumar Das & Anindya Goswami & Sharan Rajani, 2019. "Inference of Binary Regime Models with Jump Discontinuities," Papers 1910.10606, arXiv.org, revised Mar 2022.
    8. Xin Ling, 2017. "Normality of stock returns with event time clocks," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57, pages 277-298, April.
    9. David Edelman & Thomas Gillespie, 2000. "The Stochastically Subordinated Poisson Normal Process for Modelling Financial Assets," Annals of Operations Research, Springer, vol. 100(1), pages 133-164, December.
    10. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    11. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    12. Valerii Salov, 2017. "The Wandering of Corn," Papers 1704.01179, arXiv.org.
    13. Chang, Carolyn W. & S.K. Chang, Jack & Lim, Kian-Guan, 1998. "Information-time option pricing: theory and empirical evidence," Journal of Financial Economics, Elsevier, vol. 48(2), pages 211-242, May.
    14. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    15. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    16. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    17. McCulloch, James, 2012. "Fractal market time," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 686-701.
    18. Milan Kumar Das & Anindya Goswami & Sharan Rajani, 2023. "Inference of Binary Regime Models with Jump Discontinuities," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 49-86, May.
    19. Jaramillo-López, Oscar Andrés & Forero-Laverde, Germán & Venegas-Martínez, Francisco, 2020. "Evolución del supuesto de normalidad en finanzas: un análisis epistemológico del tipo Popper-Kuhn ¿Por qué la normalidad no cae en desuso? [Evolution of the assumption of normality in finance: a ep," MPRA Paper 101938, University Library of Munich, Germany.
    20. Steven Kou, 2000. "A Jump Diffusion Model for Option Pricing with Three Properties: Leptokurtic Feature, Volatility Smile, and Analytical Tractability," Econometric Society World Congress 2000 Contributed Papers 0062, Econometric Society.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.17220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.