IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0308017.html
   My bibliography  Save this paper

The CTRW in finance: Direct and inverse problems with some generalizations and extensions

Author

Listed:
  • Jaume Masoliver
  • Miquel Montero
  • Josep Perello
  • George H. Weiss

Abstract

We study financial distributions within the framework of the continuous time random walk (CTRW). We review earlier approaches and present new results related to overnight effects as well as the generalization of the formalism which embodies a non-Markovian formulation of the CTRW aimed to account for correlated increments of the return.

Suggested Citation

  • Jaume Masoliver & Miquel Montero & Josep Perello & George H. Weiss, 2003. "The CTRW in finance: Direct and inverse problems with some generalizations and extensions," Papers cond-mat/0308017, arXiv.org, revised Nov 2006.
  • Handle: RePEc:arx:papers:cond-mat/0308017
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0308017
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikita Ratanov, 2008. "Option Pricing Model Based on a Markov-modulated Diffusion with Jumps," Papers 0812.0761, arXiv.org.
    2. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    3. Vallois, Pierre & Tapiero, Charles S., 2007. "Memory-based persistence in a counting random walk process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 303-317.
    4. Jaros{l}aw Klamut & Tomasz Gubiec, 2018. "Directed Continuous-Time Random Walk with memory," Papers 1807.01934, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0308017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.