IDEAS home Printed from https://ideas.repec.org/a/spr/jecstr/v7y2018i1d10.1186_s40008-018-0104-4.html
   My bibliography  Save this article

Assessment of the economic impact of South-to-North Water Diversion Project on industrial sectors in Beijing

Author

Listed:
  • Yuning Gao

    (Tsinghua University)

  • Miao Yu

    (Tsinghua University)

Abstract

In order to address the serious water shortage problem in northern China, China has launched the South-to-North Water Diversion Scheme, which is a large-scale inter-basin water diversion project. With Beijing as an example and using input–output analysis, this paper analyzes the macroeconomic impact of the increased water supply on the affected areas in the industrial sector. Our empirical results show that the increased water supply has brought about direct economic benefits to Beijing, which had increased from RMB 4.39 billion in 2008 to RMB 55.99 billion in 2013. The estimated full value of economic benefits had increased from RMB 14.07 billion in 2008 to RMB 231.86 billion in 2013. In addition, management of water conservancy, environment and public facilities, and public management, social security and social organization are the two main industrial sectors which drive the most direct economical benefits. This paper also forecasts the impact of the South-to-North Water Division Project on Beijing’s various industrial sectors by 2020. Based on our analysis, this paper puts forward policy recommendations to further improve the efficiency of water usage in Beijing.

Suggested Citation

  • Yuning Gao & Miao Yu, 2018. "Assessment of the economic impact of South-to-North Water Diversion Project on industrial sectors in Beijing," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-17, December.
  • Handle: RePEc:spr:jecstr:v:7:y:2018:i:1:d:10.1186_s40008-018-0104-4
    DOI: 10.1186/s40008-018-0104-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40008-018-0104-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40008-018-0104-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maxwell C. Wilson & Xiao-Yan Li & Yu-Jun Ma & Andrew T. Smith & Jianguo Wu, 2017. "A Review of the Economic, Social, and Environmental Impacts of China’s South–North Water Transfer Project: A Sustainability Perspective," Sustainability, MDPI, vol. 9(8), pages 1-11, August.
    2. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    3. Chen Lin & Sangwon Suh & Stephan Pfister, 2012. "Does South‐to‐North Water Transfer Reduce the Environmental Impact of Water Consumption in China?," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 647-654, August.
    4. Michael Webber & Britt Crow-Miller & Sarah Rogers, 2017. "The South–North Water Transfer Project: remaking the geography of China," Regional Studies, Taylor & Francis Journals, vol. 51(3), pages 370-382, March.
    5. Xiangming Fang & Terry L. Roe & Rodney B. W. Smith, 2015. "Water shortages, intersectoral water allocation and economic growth: the case of China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 7(1), pages 2-26, February.
    6. Velazquez, Esther, 2006. "An input-output model of water consumption: Analysing intersectoral water relationships in Andalusia," Ecological Economics, Elsevier, vol. 56(2), pages 226-240, February.
    7. Maria Berrittella & Katrin Rehdanz & Richard S.J. Tol, 2006. "The Economic Impact Of The South-North Water Transfer Project In China: A Computable General Equilibrium Analysis," Working Papers FNU-117, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2006.
    8. Julio Sanchez-Choliz & Rosa Duarte, 2000. "The Economic Impacts of Newly Irrigated Areas in the Ebro Valley," Economic Systems Research, Taylor & Francis Journals, vol. 12(1), pages 83-98.
    9. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    10. Hua Wang & Somik Lall, 2002. "Valuing water for Chinese industries: a marginal productivity analysis," Applied Economics, Taylor & Francis Journals, vol. 34(6), pages 759-765.
    11. H. H. Stoevener & E. N. Castle, 1965. "Input-Output Models and Benefit-Cost Analysis in Water Resources Research," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 47(5), pages 1572-1579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanfang Xu & Zhen Yao, "undated". "The impact of the south-to-north water diversion project on the usage of water-saving irrigation machinery," Review of Socio - Economic Perspectives 202216, Reviewsep.
    2. Jing Zhuge & Jie Zeng & Wanxu Chen & Chi Zhang, 2023. "Impacts of Land-Use Change on Ecosystem Services Value in the South-to-North Water Diversion Project, China," IJERPH, MDPI, vol. 20(6), pages 1-20, March.
    3. Suélen Fernandes & Mariele Canal Bonfante & Carla Tognato Oliveira & Mauricio Uriona Maldonado & Lucila M. S. Campos, 2020. "Decentralized Water Supply Management Model: a Case Study of Public Policies for the Utilization of Rainwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2771-2785, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxwell C. Wilson & Xiao-Yan Li & Yu-Jun Ma & Andrew T. Smith & Jianguo Wu, 2017. "A Review of the Economic, Social, and Environmental Impacts of China’s South–North Water Transfer Project: A Sustainability Perspective," Sustainability, MDPI, vol. 9(8), pages 1-11, August.
    2. Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
    3. Yu, Yang & Hubacek, Klaus & Feng, Kuishuang & Guan, Dabo, 2010. "Assessing regional and global water footprints for the UK," Ecological Economics, Elsevier, vol. 69(5), pages 1140-1147, March.
    4. Jean Carlos da Silva Galdino & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Marcio Giannini Pereira & João Marcelo Dias Ferreira, 2020. "Creating the Path for Sustainability: Inserting Solar PV in São Francisco Transposition Project," Sustainability, MDPI, vol. 12(21), pages 1-27, October.
    5. Alexandros Gkatsikos & Konstadinos Mattas & Efstratios Loizou & Dimitrios Psaltopoulos, 2022. "The Neglected Water Rebound Effect of Income and Employment Growth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 379-398, January.
    6. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    7. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    8. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    9. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    10. Christine Schleupner & P. Michael Link, 2007. "Potential impacts on important bird habitats in Eiderstedt (Schleswig-Holstein) caused by agricultural land use changes," Working Papers FNU-138, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2007.
    11. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    12. Hyo-Jin Kim & Su-Mi Han & Seung-Hoon Yoo, 2018. "Measuring the Economic Benefits of Industrial Natural Gas Use in South Korea," Sustainability, MDPI, vol. 10(7), pages 1-10, June.
    13. Rashid Hassan & James Thurlow, 2011. "Macro–micro feedback links of water management in South Africa: CGE analyses of selected policy regimes," Agricultural Economics, International Association of Agricultural Economists, vol. 42(2), pages 235-247, March.
    14. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    16. Lowe, Benjamin H. & Oglethorpe, David R. & Choudhary, Sonal, 2020. "Comparing the economic value of virtual water with volumetric and stress-weighted approaches: A case for the tea supply chain," Ecological Economics, Elsevier, vol. 172(C).
    17. Julian Fulton & Heather Cooley & Peter Gleick, 2014. "Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3637-3649, September.
    18. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    19. White, David J. & Feng, Kuishuang & Sun, Laixiang & Hubacek, Klaus, 2015. "A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress," Ecological Modelling, Elsevier, vol. 318(C), pages 157-167.
    20. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecstr:v:7:y:2018:i:1:d:10.1186_s40008-018-0104-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.