IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v18y2009i1d10.1007_s10878-008-9138-0.html
   My bibliography  Save this article

Finding nucleolus of flow game

Author

Listed:
  • Xiaotie Deng

    (City University of Hong Kong)

  • Qizhi Fang

    (Ocean University of China)

  • Xiaoxun Sun

    (University of Southern Queensland)

Abstract

We study the algorithmic issues of finding the nucleolus of a flow game. The flow game is a cooperative game defined on a network D=(V,E;ω). The player set is E and the value of a coalition S⊆E is defined as the value of a maximum flow from source to sink in the subnetwork induced by S. We show that the nucleolus of the flow game defined on a simple network (ω(e)=1 for each e∈E) can be computed in polynomial time by a linear program duality approach, settling a twenty-three years old conjecture by Kalai and Zemel. In contrast, we prove that both the computation and the recognition of the nucleolus are $\mathcal{NP}$ -hard for flow games with general capacity.

Suggested Citation

  • Xiaotie Deng & Qizhi Fang & Xiaoxun Sun, 2009. "Finding nucleolus of flow game," Journal of Combinatorial Optimization, Springer, vol. 18(1), pages 64-86, July.
  • Handle: RePEc:spr:jcomop:v:18:y:2009:i:1:d:10.1007_s10878-008-9138-0
    DOI: 10.1007/s10878-008-9138-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-008-9138-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-008-9138-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nimrod Megiddo, 1978. "Computational Complexity of the Game Theory Approach to Cost Allocation for a Tree," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 189-196, August.
    2. Potters, Jos & Reijnierse, Hans & Biswas, Amit, 2006. "The nucleolus of balanced simple flow networks," Games and Economic Behavior, Elsevier, vol. 54(1), pages 205-225, January.
    3. Rodica Brânzei & Tamás Solymosi & Stef Tijs, 2005. "Strongly essential coalitions and the nucleolus of peer group games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(3), pages 447-460, September.
    4. D. Granot & F. Granot & W. R. Zhu, 1998. "Characterization sets for the nucleolus," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 359-374.
    5. Jeroen Kuipers & Ulrich Faigle & Walter Kern, 1998. "Note Computing the nucleolus of min-cost spanning tree games is NP-hard," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 443-450.
    6. Jeroen Kuipers & Ulrich Faigle & Walter Kern, 2001. "On the computation of the nucleolus of a cooperative game," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(1), pages 79-98.
    7. Xiaotie Deng & Toshihide Ibaraki & Hiroshi Nagamochi, 1999. "Algorithmic Aspects of the Core of Combinatorial Optimization Games," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 751-766, August.
    8. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Shanfeng Zhu & Xiaotie Deng & Maocheng Cai & Qizhi Fang, 2002. "On computational complexity of membership test in flow games and linear production games," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(1), pages 39-45.
    10. Solymosi, Tamas & Raghavan, Tirukkannamangai E S, 1994. "An Algorithm for Finding the Nucleolus of Asignment Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(2), pages 119-143.
    11. Lemaire, Jean, 1984. "An Application of Game Theory: Cost Allocation," ASTIN Bulletin, Cambridge University Press, vol. 14(1), pages 61-81, April.
    12. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    13. Walter Kern & Daniël Paulusma, 2003. "Matching Games: The Least Core and the Nucleolus," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 294-308, May.
    14. Granot, D & Maschler, M & Owen, G & Zhu, W.R., 1996. "The Kernel/Nucleolus of a Standard Tree Game," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(2), pages 219-244.
    15. Xiaotie Deng & Christos H. Papadimitriou, 1994. "On the Complexity of Cooperative Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 257-266, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qizhi Fang & Bo Li & Xiaohan Shan & Xiaoming Sun, 2018. "Path cooperative games," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 211-229, July.
    2. Nguyen, Tri-Dung & Thomas, Lyn, 2016. "Finding the nucleoli of large cooperative games," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1078-1092.
    3. Márton Benedek & Jörg Fliege & Tri-Dung Nguyen, 2020. "Finding and verifying the nucleolus of cooperative games," CERS-IE WORKING PAPERS 2021, Institute of Economics, Centre for Economic and Regional Studies.
    4. Serap Ergün & Pınar Usta & Sırma Zeynep Alparslan Gök & Gerhard Wilhelm Weber, 2023. "A game theoretical approach to emergency logistics planning in natural disasters," Annals of Operations Research, Springer, vol. 324(1), pages 855-868, May.
    5. Vijay V. Vazirani, 2023. "LP-Duality Theory and the Cores of Games," Papers 2302.07627, arXiv.org, revised Mar 2023.
    6. Sergei Dotsenko & Vladimir Mazalov, 2021. "A Cooperative Network Packing Game with Simple Paths," Mathematics, MDPI, vol. 9(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Kern & Daniël Paulusma, 2003. "Matching Games: The Least Core and the Nucleolus," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 294-308, May.
    2. Tamas Solymosi & Balazs Sziklai, 2015. "Universal Characterization Sets for the Nucleolus in Balanced Games," CERS-IE WORKING PAPERS 1512, Institute of Economics, Centre for Economic and Regional Studies.
    3. Qizhi Fang & Bo Li & Xiaohan Shan & Xiaoming Sun, 2018. "Path cooperative games," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 211-229, July.
    4. Kuipers, Jeroen & Mosquera, Manuel A. & Zarzuelo, José M., 2013. "Sharing costs in highways: A game theoretic approach," European Journal of Operational Research, Elsevier, vol. 228(1), pages 158-168.
    5. F.Javier Martínez-de-Albéniz & Carles Rafels & Neus Ybern, 2015. "Insights into the nucleolus of the assignment game," UB School of Economics Working Papers 2015/333, University of Barcelona School of Economics.
    6. Vijay V. Vazirani, 2022. "New Characterizations of Core Imputations of Matching and $b$-Matching Games," Papers 2202.00619, arXiv.org, revised Dec 2022.
    7. Sanjith Gopalakrishnan & Daniel Granot & Frieda Granot, 2021. "Consistent Allocation of Emission Responsibility in Fossil Fuel Supply Chains," Management Science, INFORMS, vol. 67(12), pages 7637-7668, December.
    8. Péter Biró & Walter Kern & Daniël Paulusma, 2012. "Computing solutions for matching games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 75-90, February.
    9. repec:has:discpr:1321 is not listed on IDEAS
    10. Walter Kern & Daniël Paulusma, 2009. "On the Core and f -Nucleolus of Flow Games," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 981-991, November.
    11. Márton Benedek & Jörg Fliege & Tri-Dung Nguyen, 2020. "Finding and verifying the nucleolus of cooperative games," CERS-IE WORKING PAPERS 2021, Institute of Economics, Centre for Economic and Regional Studies.
    12. Balázs Sziklai & Tamás Fleiner & Tamás Solymosi, 2014. "On the Core of Directed Acyclic Graph Games," CERS-IE WORKING PAPERS 1418, Institute of Economics, Centre for Economic and Regional Studies.
    13. Vazirani, Vijay V., 2022. "The general graph matching game: Approximate core," Games and Economic Behavior, Elsevier, vol. 132(C), pages 478-486.
    14. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions (extended version)," CERS-IE WORKING PAPERS 1914, Institute of Economics, Centre for Economic and Regional Studies.
    15. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(4), pages 1087-1109, December.
    16. Elena Iñarra & Roberto Serrano & Ken-Ichi Shimomura, 2020. "The Nucleolus, the Kernel, and the Bargaining Set: An Update," Revue économique, Presses de Sciences-Po, vol. 71(2), pages 225-266.
    17. Drechsel, J. & Kimms, A., 2010. "Computing core allocations in cooperative games with an application to cooperative procurement," International Journal of Production Economics, Elsevier, vol. 128(1), pages 310-321, November.
    18. Nguyen, Tri-Dung & Thomas, Lyn, 2016. "Finding the nucleoli of large cooperative games," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1078-1092.
    19. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    20. Csóka, Péter & Illés, Ferenc & Solymosi, Tamás, 2022. "On the Shapley value of liability games," European Journal of Operational Research, Elsevier, vol. 300(1), pages 378-386.
    21. Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:18:y:2009:i:1:d:10.1007_s10878-008-9138-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.