IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i1d10.1007_s13253-023-00557-y.html
   My bibliography  Save this article

A Novel Framework and a New Score for the Comparative Analysis of Forest Models Accounting for the Impact of Climate Change

Author

Listed:
  • Nikola Besic

    (Université de Lorraine, AgroParisTech
    IGN, ENSG)

  • Nicolas Picard

    (Groupement d’Intérêt Public (GIP) Ecofor)

  • Julien Sainte-Marie

    (Université de Lorraine, AgroParisTech)

  • Modeste Meliho

    (Université de Lorraine, AgroParisTech)

  • Christian Piedallu

    (Université de Lorraine, AgroParisTech)

  • Myriam Legay

    (Université de Lorraine, AgroParisTech)

Abstract

A broad consensus has been reached on the need to adapt the management of our forests to the context of the rapidly changing climate, which resulted in the development of numerous models capable of simulating the impact of the climate change on the forest. The primary goal of this specific endeavor is to propose a novel framework of comparative analysis which could lead to the unique and universal description and mapping of these models. This framework is based on the reduction of the model output to the relatively simplistic information about the presence of the tree species suitable for the forest management i.e.,—a binary classifier, making it comparable with the largely available tree presence observations. The framework we propose comes along with a new score, based on the joint use of the Principal Component Analysis and the Co-inertia Analysis, which evaluates the model vis-á-vis the corresponding observations with the focus on its phase space dynamics, i.e., its dependence on external environmental variables, rather than its spatial precision. The pertinence of the proposed multi-scale approach, suitable for the multi-scale analysis, is demonstrated by conjointly using prototype binary classifiers, designed for this purpose, and two different examples of binary classifiers used in the forest management—climate-dependent tree species distribution models. This work has the ambition to serve as the basis for a potential combination of different models at different spatial scales in order to improve the decision-making process in the forest management.

Suggested Citation

  • Nikola Besic & Nicolas Picard & Julien Sainte-Marie & Modeste Meliho & Christian Piedallu & Myriam Legay, 2024. "A Novel Framework and a New Score for the Comparative Analysis of Forest Models Accounting for the Impact of Climate Change," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 73-91, March.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00557-y
    DOI: 10.1007/s13253-023-00557-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00557-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00557-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    2. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    3. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    4. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    5. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    6. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    7. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    8. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    9. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    10. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    11. Angelucci, Federica & Conforti, Piero, 2010. "Risk management and finance along value chains of Small Island Developing States. Evidence from the Caribbean and the Pacific," Food Policy, Elsevier, vol. 35(6), pages 565-575, December.
    12. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    13. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    14. Paolo Rizzi & Paola Graziano & Antonio Dallara, 2018. "A capacity approach to territorial resilience: the case of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 285-328, March.
    15. Pérez, Claudia & Claveria, Oscar, 2020. "Natural resources and human development: Evidence from mineral-dependent African countries using exploratory graphical analysis," Resources Policy, Elsevier, vol. 65(C).
    16. Zeynep Ozkok, 2015. "Financial openness and financial development: an analysis using indices," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(5), pages 620-649, September.
    17. Asongu, Simplice A & Odhiambo, Nicholas M, 2019. "Governance,CO2 emissions and inclusive human development in Sub-Saharan Africa," Working Papers 25253, University of South Africa, Department of Economics.
    18. Anne M. Lausier & Shaleen Jain, 2018. "Diversity in global patterns of observed precipitation variability and change on river basin scales," Climatic Change, Springer, vol. 149(2), pages 261-275, July.
    19. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00557-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.