IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v26y2017i5d10.1007_s10726-017-9531-0.html
   My bibliography  Save this article

Manipulation in Conditional Decision Markets

Author

Listed:
  • Florian Teschner

    () (Karlsruhe Institute of Technology (KIT))

  • David Rothschild

    () (Microsoft Research)

  • Henner Gimpel

    () (University of Augsburg)

Abstract

Abstract Conditional decision markets concurrently predict the future and decide on it. These markets price the impact of decisions, conditional on them being executed. After the markets close, a principal decides which decisions are executed based on the prices in the markets. As some decisions are not executed, the respective outcome cannot be observed, and the markets predicting the impact of non-executed decisions are void. This allows ex-post costless manipulation of such markets. We conduct two versions of an online experiment to explore scenarios in which a principal runs conditional decision markets to inform her choice among a set of a risky alternatives. We find that the level of manipulation depends on the simplicity of the market setting. When a trader is alone, has the power to move prices far enough, and the decision is deterministically tied to market prices or a very high correlation between prices and decision is implied, only then manipulation occurs. As soon as another trader is present to add risk to manipulation, manipulation is eliminated. Our results contrast theoretical work on conditional decision markets in two ways: First, our results suggest that manipulation may not be as meaningful an issue. Second, probabilistic decision rules are used to add risk to manipulation; when manipulation is not a meaningful issue, deterministic decisions provide the better decision with less noise. To the best of our knowledge, this is the first experimental analysis isolating the effects of the conditional nature of decision markets.

Suggested Citation

  • Florian Teschner & David Rothschild & Henner Gimpel, 2017. "Manipulation in Conditional Decision Markets," Group Decision and Negotiation, Springer, vol. 26(5), pages 953-971, September.
  • Handle: RePEc:spr:grdene:v:26:y:2017:i:5:d:10.1007_s10726-017-9531-0
    DOI: 10.1007/s10726-017-9531-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-017-9531-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Horton & David Rand & Richard Zeckhauser, 2011. "The online laboratory: conducting experiments in a real labor market," Experimental Economics, Springer;Economic Science Association, vol. 14(3), pages 399-425, September.
    2. Deck, Cary & Lin, Shengle & Porter, David, 2013. "Affecting policy by manipulating prediction markets: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 48-62.
    3. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-681, April.
    4. Hanson, Robin & Oprea, Ryan & Porter, David, 2006. "Information aggregation and manipulation in an experimental market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(4), pages 449-459, August.
    5. Robin Hanson, 2003. "Combinatorial Information Market Design," Information Systems Frontiers, Springer, vol. 5(1), pages 107-119, January.
    6. Joyce E. Berg & Thomas A. Rietz, 2003. "Prediction Markets as Decision Support Systems," Information Systems Frontiers, Springer, vol. 5(1), pages 79-93, January.
    7. Bennouri, Moez & Gimpel, Henner & Robert, Jacques, 2011. "Measuring the impact of information aggregation mechanisms: An experimental investigation," Journal of Economic Behavior & Organization, Elsevier, vol. 78(3), pages 302-318, May.
    8. Paul Rhode & Koleman Strumpf, 2006. "Manipulating political stock markets: A field experiment and a century of observational data," Natural Field Experiments 00325, The Field Experiments Website.
    9. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.
    10. Robin Hanson, 2007. "Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation," Journal of Prediction Markets, University of Buckingham Press, vol. 1(1), pages 3-15, February.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. Ledyard, John & Hanson, Robin & Ishikida, Takashi, 2009. "An experimental test of combinatorial information markets," Journal of Economic Behavior & Organization, Elsevier, vol. 69(2), pages 182-189, February.
    13. Berg, Joyce E. & Nelson, Forrest D. & Rietz, Thomas A., 2008. "Prediction market accuracy in the long run," International Journal of Forecasting, Elsevier, vol. 24(2), pages 285-300.
    14. Florian Teschner & Maximilian Coblenz & Christof Weinhardt, 2011. "Short-Selling In Prediction Markets," Journal of Prediction Markets, University of Buckingham Press, vol. 5(2), pages 14-31.
    15. Lian Jian & Rahul Sami, 2012. "Aggregation and Manipulation in Prediction Markets: Effects of Trading Mechanism and Information Distribution," Management Science, INFORMS, vol. 58(1), pages 123-140, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Teschner & Henner Gimpel, 2018. "Crowd Labor Markets as Platform for Group Decision and Negotiation Research: A Comparison to Laboratory Experiments," Group Decision and Negotiation, Springer, vol. 27(2), pages 197-214, April.

    More about this item

    Keywords

    Market design; Market manipulation; Conditional markets; Prediction markets; Decision markets;

    JEL classification:

    • C9 - Mathematical and Quantitative Methods - - Design of Experiments
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:26:y:2017:i:5:d:10.1007_s10726-017-9531-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.