IDEAS home Printed from
   My bibliography  Save this article

Existence of Lévy term structure models


  • Damir Filipović


  • Stefan Tappe



No abstract is available for this item.

Suggested Citation

  • Damir Filipović & Stefan Tappe, 2008. "Existence of Lévy term structure models," Finance and Stochastics, Springer, vol. 12(1), pages 83-115, January.
  • Handle: RePEc:spr:finsto:v:12:y:2008:i:1:p:83-115
    DOI: 10.1007/s00780-007-0054-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Robert Jarrow & Dilip Madan, 1995. "Option Pricing Using The Term Structure Of Interest Rates To Hedge Systematic Discontinuities In Asset Returns," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 311-336.
    2. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239.
    3. Jacek Jakubowski & Jerzy Zabczyk, 2007. "Exponential moments for HJM models with jumps," Finance and Stochastics, Springer, vol. 11(3), pages 429-445, July.
    4. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26.
    5. Carl Chiarella & Oh Kang Kwon, 2001. "Forward rate dependent Markovian transformations of the Heath-Jarrow-Morton term structure model," Finance and Stochastics, Springer, vol. 5(2), pages 237-257.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    7. Ernst Eberlein & Jean Jacod & Sebastian Raible, 2005. "Lévy term structure models: No-arbitrage and completeness," Finance and Stochastics, Springer, vol. 9(1), pages 67-88, January.
    8. Michael Tehranchi, 2005. "A note on invariant measures for HJM models," Finance and Stochastics, Springer, vol. 9(3), pages 389-398, July.
    9. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
    10. Hiroshi Shirakawa, 1991. "Interest Rate Option Pricing With Poisson-Gaussian Forward Rate Curve Processes," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 77-94.
    11. Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
    12. Andrew Mark Jeffrey, 1995. "Single Factor Heath-Jarrow-Morton Term Structure Models Based on Markov Spot Interest Rate Dynamics," Yale School of Management Working Papers ysm46, Yale School of Management.
    13. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tappe, Stefan, 2010. "A note on stochastic integrals as L2-curves," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1141-1145, July.
    2. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Lijun Bo & Ying Jiao & Xuewei Yang, 2011. "Credit derivatives pricing with default density term structure modelled by L\'evy random fields," Papers 1112.2952,
    4. Micha{l} Barski & Jerzy Zabczyk, 2015. "Forward rate models with linear volatilities," Papers 1512.05321,
    5. Albeverio, S. & Mandrekar, V. & Rüdiger, B., 2009. "Existence of mild solutions for stochastic differential equations and semilinear equations with non-Gaussian Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 835-863, March.
    6. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    7. Chiarolla, Maria B. & De Angelis, Tiziano, 2015. "Analytical pricing of American Put options on a Zero Coupon Bond in the Heath–Jarrow–Morton model," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 678-707.
    8. repec:wsi:ijtafx:v:17:y:2014:i:03:n:s0219024914500162 is not listed on IDEAS
    9. Zdzislaw Brzezniak & Tayfun Kok, 2016. "Stochastic Evolution Equations in Banach Spaces and Applications to Heath-Jarrow-Morton-Musiela Equation," Papers 1608.05814,
    10. Michał Barski & Jerzy Zabczyk, 2012. "Forward rate models with linear volatilities," Finance and Stochastics, Springer, vol. 16(3), pages 537-560, July.
    11. Jonas Alm & Filip Lindskog, 2015. "Valuation of Index-Linked Cash Flows in a Heath–Jarrow–Morton Framework," Risks, MDPI, Open Access Journal, vol. 3(3), pages 1-27, September.
    12. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2009. "Variance Optimal Hedging for continuous time processes with independent increments and applications," Papers 0912.0372,

    More about this item


    Forward curve spaces; Lévy term structure models; Stochastic integration in Hilbert spaces; Strong; weak and mild solutions of infinite dimensional SDEs; 91B28; 91B70; 60G51; 60H15; E43; G10;

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:12:y:2008:i:1:p:83-115. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.