IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i4d10.1007_s10668-023-04264-z.html
   My bibliography  Save this article

The data as a production factor: nonlinear effects of factor efficiency on haze pollution

Author

Listed:
  • Mei-Rui Zhong

    (Central South University
    Central South University)

  • Jia-Yu Fu

    (Central South University
    Central South University)

  • Han Zou

    (Central South University
    Central South University)

Abstract

Data factor is impacting existing production mode and empowering traditional production factors. This article considers data as an independent factor to calculate data efficiency and energy efficiency by a slacks-based measure model. Then, the spatial Durbin model is used to assess the nonlinear effects of factor efficiency on haze pollution in 278 Chinese cities during 2012–2019. The measurement results showed that annual average data and energy efficiencies are 0.7747 and 0.7920, respectively. The benchmark regression confirmed a significant U-shaped relationship between energy efficiency and haze pollution in both local and neighbouring regions, and inverted U-shaped relationship existed between data efficiency and haze pollution, but the spatial spillover effect manifested as a U-shaped relationship. The mechanism test suggested that pollution control effect of data efficiency is achieved by green technological innovation and industrial structure upgrade. Besides, the heterogeneity analysis showed that the “Smart City” policy benefits social production for higher data and energy efficiency, which magnified the role in controlling haze pollution. Over 60% samples in current data efficiency cross the inflection point of inverted U-shaped curve to inhibit haze pollution, and this article provided important guidance for regional environmental construction by developing data factor.

Suggested Citation

  • Mei-Rui Zhong & Jia-Yu Fu & Han Zou, 2025. "The data as a production factor: nonlinear effects of factor efficiency on haze pollution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(4), pages 8977-9002, April.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:4:d:10.1007_s10668-023-04264-z
    DOI: 10.1007/s10668-023-04264-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04264-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04264-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    2. Zhang, Yiren & Ran, Congjing, 2023. "Effect of digital economy on air pollution in China? New evidence from the “National Big Data Comprehensive Pilot Area” policy," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 986-1004.
    3. Zihanxin Li & Nuoyan Li & Huwei Wen, 2021. "Digital Economy and Environmental Quality: Evidence from 217 Cities in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    4. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528, Decembrie.
    5. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    6. Yu, Bolin & Fang, Debin & Pan, Yuling & Jia, Yunxia, 2023. "Countries’ green total-factor productivity towards a low-carbon world: The role of energy trilemma," Energy, Elsevier, vol. 278(PB).
    7. Wang, Jianda & Guo, Dongsheng, 2023. "Siphon and radiation effects of ICT agglomeration on green total factor productivity: Evidence from a spatial Durbin model," Energy Economics, Elsevier, vol. 126(C).
    8. Sa Xu & Cunyi Yang & Zhehao Huang & Pierre Failler, 2022. "Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    9. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    10. Baležentis, Tomas & Butkus, Mindaugas & Štreimikienė, Dalia & Shen, Zhiyang, 2021. "Exploring the limits for increasing energy efficiency in the residential sector of the European Union: Insights from the rebound effect," Energy Policy, Elsevier, vol. 149(C).
    11. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    12. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    13. Chen, Huanyu & Yi, Jizheng & Chen, Aibin & Peng, Duanxiang & Yang, Jieqiong, 2023. "Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model," Energy Policy, Elsevier, vol. 172(C).
    14. Kevin J. Stiroh, 2002. "Information Technology and the U.S. Productivity Revival: What Do the Industry Data Say?," American Economic Review, American Economic Association, vol. 92(5), pages 1559-1576, December.
    15. Wang, Weilong & Yang, Xiaodong & Cao, Jianhong & Bu, Wenchao & Dagestani, Abd Alwahed & Adebayo, Tomiwa Sunday & Dilanchiev, Azer & Ren, Siyu, 2022. "Energy internet, digital economy, and green economic growth: Evidence from China," Innovation and Green Development, Elsevier, vol. 1(2).
    16. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    17. Zhichuan Zhu & Bo Liu & Zhuoxi Yu & Jianhong Cao, 2022. "Effects of the Digital Economy on Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    18. Zhong, Mei-Rui & Xiao, Shun-Li & Zou, Han & Zhang, Yi-Jun & Song, Yi, 2021. "The effects of technical change on carbon intensity in China’s non-ferrous metal industry," Resources Policy, Elsevier, vol. 73(C).
    19. William Nordhaus, 2019. "Can We Control Carbon Dioxide? (From 1975)," American Economic Review, American Economic Association, vol. 109(6), pages 2015-2035, June.
    20. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    21. Saint Akadiri, Seyi & Alola, Andrew Adewale & Akadiri, Ada Chigozie & Alola, Uju Violet, 2019. "Renewable energy consumption in EU-28 countries: Policy toward pollution mitigation and economic sustainability," Energy Policy, Elsevier, vol. 132(C), pages 803-810.
    22. Zimmermann, Michel & Vöhringer, Frank & Thalmann, Philippe & Moreau, Vincent, 2021. "Do rebound effects matter for Switzerland? Assessing the effectiveness of industrial energy efficiency improvements," Energy Economics, Elsevier, vol. 104(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianda & Lyu, Weijian & Chen, Xi & Yang, Senmiao & Dong, Xiucheng, 2024. "Navigating total-factor carbon emission efficiency in the digital era: A case study from industry structure, environmental regulations, and trade spillover," Economic Analysis and Policy, Elsevier, vol. 84(C), pages 260-277.
    2. Pingguo Xu & Leyi Chen & Huajuan Dai, 2022. "Pathways to Sustainable Development: Corporate Digital Transformation and Environmental Performance in China," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    3. Yukun Ma & Shaojian Wang & Chunshan Zhou, 2023. "Can the Development of the Digital Economy Reduce Urban Carbon Emissions? Case Study of Guangdong Province," Land, MDPI, vol. 12(4), pages 1-13, March.
    4. Qiuqiu Guo & Xiaoyu Ma, 2023. "How Does the Digital Economy Affect Sustainable Urban Development? Empirical Evidence from Chinese Cities," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    5. Tianchu Feng & Andrea Appolloni & Jiayu Chen, 2024. "How does corporate digital transformation affect carbon productivity? Evidence from Chinese listed companies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 31425-31445, December.
    6. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    7. Managi, Shunsuke & Jena, Pradyot Ranjan, 2008. "Environmental productivity and Kuznets curve in India," Ecological Economics, Elsevier, vol. 65(2), pages 432-440, April.
    8. Zhao, Ruizeng & An, Yuchen & Tu, Hanyun & Song, Jiashan, 2024. "China's economic growth and low-carbon development under the background of resource curse: A new perspective based on digital finance," International Review of Economics & Finance, Elsevier, vol. 96(PA).
    9. Li, Longda, 2024. "The environmental spillovers of buyers' digital transformation: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    10. Yan Peng & Hanzi Chen & Tinghui Li, 2023. "The Impact of Digital Transformation on ESG: A Case Study of Chinese-Listed Companies," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    11. Ruiyuan Dong & Xiaowei Zhou, 2023. "Analysis of the Nonlinear and Spatial Spillover Effects of the Digital Economy on Carbon Emissions in the Yellow River Basin," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    12. Wang, Qiang & Wang, Lili & Li, Rongrong, 2023. "Could trade protectionism reshape the nexus of energy-economy-environment? Insight from different income groups," Resources Policy, Elsevier, vol. 85(PA).
    13. Wang, Shubin & Li, Jiabao & Lu, Quanying, 2024. "Optimization of carbon peaking achieving paths in China's transportation sector under digital feature clustering," Energy, Elsevier, vol. 313(C).
    14. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    15. Menggen Chen & Songyangyang Zhao & Jiawen Wang, 2023. "The Impact of the Digital Economy on Regional Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(20), pages 1-34, October.
    16. Jiwen Li & Chang Gan, 2025. "Inhibiting or Promoting? Urban–Rural Income Inequality and Carbon Emission Performance," Sustainability, MDPI, vol. 17(4), pages 1-21, February.
    17. Guo, Qiu-tong & Dong, Yong & Feng, Biao & Zhang, Hao, 2023. "Can green finance development promote total-factor energy efficiency? Empirical evidence from China based on a spatial Durbin model," Energy Policy, Elsevier, vol. 177(C).
    18. Liang, Yingying & Qin, Jindong & Ishizaka, Alessio, 2025. "Assessment of digital economy development with the new multicriteria sorting method: DCMSort," Omega, Elsevier, vol. 132(C).
    19. Ren-Long Zhang & Xiao-Hong Liu & Wei-Bo Jiang, 2023. "How Does the Industrial Digitization Affect Carbon Emission Efficiency? Empirical Measurement Evidence from China’s Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    20. Ziyu Meng & Wen-Bo Li & Chaofan Chen & Chenghua Guan, 2023. "Carbon Emission Reduction Effects of the Digital Economy: Mechanisms and Evidence from 282 Cities in China," Land, MDPI, vol. 12(4), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:4:d:10.1007_s10668-023-04264-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.