IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04277444.html
   My bibliography  Save this paper

Evaluating the energy efficiency-enhancing potential of the digital economy: Evidence from China

Author

Listed:
  • Malin Song

    (School of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu)

  • Heting Pan

    (School of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu)

  • Michael Vardanyan

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Zhiyang Shen

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique, IÉSEG School Of Management [Puteaux])

Abstract

Improving energy efficiency can go a long way in helping China address environmental problems it currently faces and help deliver on its pledge of achieving carbon neutrality by 2060. At the same time, innovative production technologies based on digital solutions continue to attract significant attention, owing to their potential to provide environmentally sustainable development opportunities. This study explores whether the digital economy can improve energy efficiency by facilitating input reallocation and promoting better information flows. We rely on a panel of 285 Chinese cities for the period 2010–2019 and a so-called slacks-based efficiency measure incorporating socially undesirable outputs to obtain energy efficiency from the decomposition of a productivity index. Our estimation results demonstrate that the digital economy can promote better energy use efficiency. More specifically, a 1-percentage point increase in the size of the digital economy leads to an average increase of around 14.65 percentage points in energy efficiency. This conclusion still holds under a two-stage least-squares procedure used to mitigate endogeneity. The efficiency-enhancing impact of digitalization is heterogeneous and depends on factors such as resource endowment, city size, and geographical location. Additionally, our results suggest that digital transformation within a particular region has an adverse effect on energy efficiency in that region's neighboring areas due to negative spatial spillover effects. These negative spillovers outweigh the positive direct effect on energy efficiency that can be attributed to a growing digital economy.

Suggested Citation

  • Malin Song & Heting Pan & Michael Vardanyan & Zhiyang Shen, 2023. "Evaluating the energy efficiency-enhancing potential of the digital economy: Evidence from China," Post-Print hal-04277444, HAL.
  • Handle: RePEc:hal:journl:hal-04277444
    DOI: 10.1016/j.jenvman.2023.118408
    Note: View the original document on HAL open archive server: https://hal.science/hal-04277444v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04277444v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jenvman.2023.118408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanderson, Eleanor & Windmeijer, Frank, 2016. "A weak instrument F-test in linear IV models with multiple endogenous variables," Journal of Econometrics, Elsevier, vol. 190(2), pages 212-221.
    2. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    3. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    4. Byrne, David M. & Corrado, Carol A., 2020. "The increasing deflationary influence of consumer digital access services," Economics Letters, Elsevier, vol. 196(C).
    5. Charles I. Jones & Christopher Tonetti, 2020. "Nonrivalry and the Economics of Data," American Economic Review, American Economic Association, vol. 110(9), pages 2819-2858, September.
    6. Leviäkangas, Pekka & Mok Paik, Seong & Moon, Sungkon, 2017. "Keeping up with the pace of digitization: The case of the Australian construction industry," Technology in Society, Elsevier, vol. 50(C), pages 33-43.
    7. Erik Brynjolfsson & Xiang Hui & Meng Liu, 2019. "Does Machine Translation Affect International Trade? Evidence from a Large Digital Platform," Management Science, INFORMS, vol. 65(12), pages 5449-5460, December.
    8. Daniel Kiel & Julian M. Müller & Christian Arnold & Kai-Ingo Voigt, 2017. "Sustainable Industrial Value Creation: Benefits And Challenges Of Industry 4.0," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-34, December.
    9. Huo, Da & Zhang, Xiaotao & Meng, Shuang & Wu, Gang & Li, Junhang & Di, Ruoqi, 2022. "Green finance and energy efficiency: Dynamic study of the spatial externality of institutional support in a digital economy by using hidden Markov chain," Energy Economics, Elsevier, vol. 116(C).
    10. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    11. Chengying Yang & Tajul Ariffin Masron, 2022. "Impact of Digital Finance on Energy Efficiency in the Context of Green Sustainable Development," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    12. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    13. Jiachao Peng & Hanfei Chen & Lei Jia & Shuke Fu & Jiali Tian, 2023. "Impact of Digital Industrialization on the Energy Industry Supply Chain: Evidence from the Natural Gas Industry in China," Energies, MDPI, vol. 16(4), pages 1-32, February.
    14. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    15. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    16. Sanna Ojanperä & Mark Graham & Matthew Zook, 2019. "The Digital Knowledge Economy Index: Mapping Content Production," Journal of Development Studies, Taylor & Francis Journals, vol. 55(12), pages 2626-2643, December.
    17. Hua, Haochen & Qin, Yuchao & Hao, Chuantong & Cao, Junwei, 2019. "Optimal energy management strategies for energy Internet via deep reinforcement learning approach," Applied Energy, Elsevier, vol. 239(C), pages 598-609.
    18. Song, Malin & Peng, Licheng & Shang, Yuping & Zhao, Xin, 2022. "Green technology progress and total factor productivity of resource-based enterprises: A perspective of technical compensation of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    19. Malin Song & Jianlin Wang & Jiajia Zhao & Tomas Baležentis & Zhiyang Shen, 2020. "Production and safety efficiency evaluation in Chinese coal mines: accident deaths as undesirable output," Annals of Operations Research, Springer, vol. 291(1), pages 827-845, August.
    20. James P. LeSage & R. Kelley Pace, 2008. "Spatial Econometric Modeling Of Origin‐Destination Flows," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 941-967, December.
    21. Anselin, Luc & Tam Cho, Wendy K., 2002. "Spatial Effects and Ecological Inference," Political Analysis, Cambridge University Press, vol. 10(3), pages 276-297, July.
    22. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    23. Zakari, Abdulrasheed & Khan, Irfan & Tan, Duojiao & Alvarado, Rafael & Dagar, Vishal, 2022. "Energy efficiency and sustainable development goals (SDGs)," Energy, Elsevier, vol. 239(PE).
    24. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    25. Zhichuan Zhu & Bo Liu & Zhuoxi Yu & Jianhong Cao, 2022. "Effects of the Digital Economy on Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Qiu-tong & Dong, Yong & Feng, Biao & Zhang, Hao, 2023. "Can green finance development promote total-factor energy efficiency? Empirical evidence from China based on a spatial Durbin model," Energy Policy, Elsevier, vol. 177(C).
    2. Liang, Yingying & Qin, Jindong & Ishizaka, Alessio, 2025. "Assessment of digital economy development with the new multicriteria sorting method: DCMSort," Omega, Elsevier, vol. 132(C).
    3. Bingjie Liu & Fengyi Wang, 2025. "The Impact of the Global Digital Economy on Carbon Emissions: A Review," Sustainability, MDPI, vol. 17(11), pages 1-22, May.
    4. Chenxi Wang & Xingguang Pan & Deli Wang & Muhammad Wasif Zafar, 2024. "Information communication technology, globalization, and energy poverty: Prospects for sustainable development in the N‐11 countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 7156-7170, December.
    5. Ruiyuan Dong & Xiaowei Zhou, 2023. "Analysis of the Nonlinear and Spatial Spillover Effects of the Digital Economy on Carbon Emissions in the Yellow River Basin," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    6. Wang, Jianda & Lyu, Weijian & Chen, Xi & Yang, Senmiao & Dong, Xiucheng, 2024. "Navigating total-factor carbon emission efficiency in the digital era: A case study from industry structure, environmental regulations, and trade spillover," Economic Analysis and Policy, Elsevier, vol. 84(C), pages 260-277.
    7. Tianchu Feng & Andrea Appolloni & Jiayu Chen, 2024. "How does corporate digital transformation affect carbon productivity? Evidence from Chinese listed companies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 31425-31445, December.
    8. Mei-Rui Zhong & Jia-Yu Fu & Han Zou, 2025. "The data as a production factor: nonlinear effects of factor efficiency on haze pollution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(4), pages 8977-9002, April.
    9. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    10. Zhao, Ruizeng & An, Yuchen & Tu, Hanyun & Song, Jiashan, 2024. "China's economic growth and low-carbon development under the background of resource curse: A new perspective based on digital finance," International Review of Economics & Finance, Elsevier, vol. 96(PA).
    11. Zhao, Xiaoyang & Weng, Zongyuan, 2024. "Digital dividend or divide: The digital economy and urban entrepreneurial activity," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    12. Zhao, Dengfeng & Lin, Jingting & Bashir, Muhammad Adnan, 2024. "Analyze the effect of energy efficiency, natural resources, and the digital economy on ecological footprint in OCED countries: The mediating role of renewable energy," Resources Policy, Elsevier, vol. 95(C).
    13. Pingguo Xu & Leyi Chen & Huajuan Dai, 2022. "Pathways to Sustainable Development: Corporate Digital Transformation and Environmental Performance in China," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    14. Wang, Shubin & Li, Jiabao & Lu, Quanying, 2024. "Optimization of carbon peaking achieving paths in China's transportation sector under digital feature clustering," Energy, Elsevier, vol. 313(C).
    15. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    16. Qiuqiu Guo & Xiaoyu Ma, 2023. "How Does the Digital Economy Affect Sustainable Urban Development? Empirical Evidence from Chinese Cities," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    17. Ren-Long Zhang & Xiao-Hong Liu & Wei-Bo Jiang, 2023. "How Does the Industrial Digitization Affect Carbon Emission Efficiency? Empirical Measurement Evidence from China’s Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    18. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    19. Liu, Baoliu & Huang, Yujie & Chen, Mengmei & Lan, Zirui, 2024. "Towards sustainability: How does the digital-real integration affect regional green development efficiency?," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 42-59.
    20. Wang, Lianghu & Shao, Jun, 2024. "The energy saving effects of digital infrastructure construction: Empirical evidence from Chinese industry," Energy, Elsevier, vol. 294(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04277444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.