IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i2d10.1007_s10668-023-02906-w.html
   My bibliography  Save this article

Evaluating the effect of low-carbon city pilot policy on urban PM2.5: evidence from a quasi-natural experiment in China

Author

Listed:
  • Yong He

    (Guangdong University of Technology)

  • Zhiyu Lai

    (Guangdong University of Technology)

  • Nuo Liao

    (Guangdong University of Technology)

Abstract

Evaluating the effect of low-carbon city pilot (LCCP) policy is of vital importance for urban ecological construction. This study aims to deeply explore the effect of LCCP policy on urban air pollutant PM2.5. Using China’s prefecture-level panel data during 2004–2020, this research adopts the difference-in-difference model to evaluate the effect of LCCP policy on urban PM2.5 and considers the heterogeneity of policy effect from the perspective of urban resource endowment and industrial characteristics. Also, this study analyzes mechanism affecting urban PM2.5 by mediation effect model. In addition, this paper explores the spatial spillover effect of the LCCP policy. The results indicate that the LCCP policy has significantly reduced urban PM2.5. The heterogeneity analysis shows that the effect of LCCP policy in declining resource-based cities is the largest, followed by regenerated resource-based cities and non-resource-based cities. The effect of LCCP policy on PM2.5 in non-old industrial-based cities is greater than that in old industrial-based cities. The impact mechanism analysis indicates that the effect of LCCP policy could be achieved through promoting technological innovation, public transportation, and industrial agglomeration. The LCCP policy has reduced the PM2.5 of neighboring pilot cities, but it has insignificant effect on neighboring non-pilot cities.

Suggested Citation

  • Yong He & Zhiyu Lai & Nuo Liao, 2024. "Evaluating the effect of low-carbon city pilot policy on urban PM2.5: evidence from a quasi-natural experiment in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 4725-4751, February.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:2:d:10.1007_s10668-023-02906-w
    DOI: 10.1007/s10668-023-02906-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-02906-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-02906-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jing & Zhou, Chunshan & Wang, Shaojian & Li, Shijie, 2018. "Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally," Applied Energy, Elsevier, vol. 230(C), pages 94-105.
    2. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    3. Zeng, Jingjing & Liu, Ting & Feiock, Richard & Li, Fei, 2019. "The impacts of China's provincial energy policies on major air pollutants: A spatial econometric analysis," Energy Policy, Elsevier, vol. 132(C), pages 392-403.
    4. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    5. Gu, Yan & Ho, Kung-Cheng & Yan, Cheng & Gozgor, Giray, 2021. "Public environmental concern, CEO turnover, and green investment: Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 100(C).
    6. Yan, Yaxue & Zhang, Xiaoling & Zhang, Jihong & Li, Kai, 2020. "Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: The China story," Energy Policy, Elsevier, vol. 138(C).
    7. Cheng, Beibei & Dai, Hancheng & Wang, Peng & Xie, Yang & Chen, Li & Zhao, Daiqing & Masui, Toshihiko, 2016. "Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China," Energy Policy, Elsevier, vol. 88(C), pages 515-527.
    8. Shi, Qian & Lai, Xiaodong, 2013. "Identifying the underpin of green and low carbon technology innovation research: A literature review from 1994 to 2010," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 839-864.
    9. Huang, Guobin & Zhang, Jie & Yu, Jian & Shi, Xunpeng, 2020. "Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis," Energy Economics, Elsevier, vol. 92(C).
    10. Pan, An & Zhang, Wenna & Shi, Xunpeng & Dai, Ling, 2022. "Climate policy and low-carbon innovation: Evidence from low-carbon city pilots in China," Energy Economics, Elsevier, vol. 112(C).
    11. Junfeng Zhao & Jianliang Shen & Jinling Yan & Xiaodong Yang & Yu Hao & Qiying Ran, 2023. "Corruption, market segmentation and haze pollution: empirical evidence from China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 66(3), pages 642-664, February.
    12. Pappas, Dimitrios & Chalvatzis, Konstantinos J. & Guan, Dabo & Ioannidis, Alexis, 2018. "Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia," Applied Energy, Elsevier, vol. 225(C), pages 183-194.
    13. Guo, Ran & Yuan, Yijun, 2020. "Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data," Energy Policy, Elsevier, vol. 145(C).
    14. Chagas, André L.S. & Azzoni, Carlos R. & Almeida, Alexandre N., 2016. "A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases," Regional Science and Urban Economics, Elsevier, vol. 59(C), pages 24-36.
    15. Sohag, Kazi & Begum, Rawshan Ara & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia," Energy, Elsevier, vol. 90(P2), pages 1497-1507.
    16. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    17. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    18. Moriki Hosoe & Tohru Naito, 2006. "Trans‐boundary pollution transmission and regional agglomeration effects," Papers in Regional Science, Wiley Blackwell, vol. 85(1), pages 99-120, March.
    19. Tian, Yanping & Song, Wenjing & Liu, Min, 2021. "Assessment of how environmental policy affects urban innovation: Evidence from China’s low-carbon pilot cities program," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 41-56.
    20. Wang, Man & Yang, Qiuping, 2022. "The heterogeneous treatment effect of low-carbon city pilot policy on stock return: A generalized random forests approach," Finance Research Letters, Elsevier, vol. 47(PA).
    21. Song, Qijiao & Qin, Ming & Wang, Ruichen & Qi, Ye, 2020. "How does the nested structure affect policy innovation?: Empirical research on China's low carbon pilot cities," Energy Policy, Elsevier, vol. 144(C).
    22. Jinling Yan & Junfeng Zhao & Xiaodong Yang & Xufeng Su & Hailing Wang & Qiying Ran & Jianliang Shen, 2021. "Does Low-Carbon City Pilot Policy Alleviate Urban Haze Pollution? Empirical Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(21), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yihong & Gao, Jiayan, 2023. "Low-carbon transformation and corporate cash holdings," Finance Research Letters, Elsevier, vol. 54(C).
    2. Zhu, Chen & Lee, Chien-Chiang, 2022. "The effects of low-carbon pilot policy on technological innovation: Evidence from prefecture-level data in China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Liu, Xiangsheng & Lv, Lingli, 2023. "The effect of China's low carbon city pilot policy on corporate financialization," Finance Research Letters, Elsevier, vol. 54(C).
    4. Mengyao Liu & Hongli Jiang, 2022. "Can the Energy-Consumption Permit Trading Scheme Curb SO 2 Emissions? Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    5. Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
    6. Ren, Yi-Shuai & Liu, Pei-Zhi & Klein, Tony & Sheenan, Lisa, 2024. "Does the low-carbon pilot cities policy make a difference to the carbon intensity reduction?," Journal of Economic Behavior & Organization, Elsevier, vol. 217(C), pages 227-239.
    7. Jian Song & Jing Wang & Zhe Chen, 2022. "How Low-Carbon Pilots Affect Chinese Urban Energy Efficiency: An Explanation from Technological Progress," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    8. Yajun Zhu & Churen Sun, 2022. "Carbon Reduction, Pollution Intensity, and Firms’ Ratios of Value Added in Exports: Evidence from China’s Low-Carbon Pilot Policy," Sustainability, MDPI, vol. 14(19), pages 1-26, October.
    9. Da Gao & Yanjun Cao & Chang Liu, 2023. "The Low-Carbon Policy and Urban Green Total Factor Energy Efficiency: Evidence from a Spatial Difference-in-Difference Method," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    10. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "How effective has the low-carbon city pilot policy been as an environmental intervention in curbing pollution? Evidence from Chinese industrial enterprises," Energy Economics, Elsevier, vol. 118(C).
    11. Wanzhe Chen & Jiaqi Liu & Xuanwei Ning & Lei Du & Yang Zhang & Chengliang Wu, 2023. "Low-Carbon City Building and Green Development: New Evidence from Quasi Natural Experiments from 277 Cities in China," Sustainability, MDPI, vol. 15(15), pages 1-28, July.
    12. Yi, Ming & Wang, Yiqian & Sheng, Mingyue & Sharp, Basil & Zhang, Yao, 2020. "Effects of heterogeneous technological progress on haze pollution: Evidence from China," Ecological Economics, Elsevier, vol. 169(C).
    13. Jinling Yan & Junfeng Zhao & Xiaodong Yang & Xufeng Su & Hailing Wang & Qiying Ran & Jianliang Shen, 2021. "Does Low-Carbon City Pilot Policy Alleviate Urban Haze Pollution? Empirical Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(21), pages 1-20, October.
    14. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    15. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    16. Cui, Huanyu & Cao, Yuequn, 2023. "How can market-oriented environmental regulation improve urban energy efficiency? Evidence from quasi-experiment in China's SO2 trading emissions system," Energy, Elsevier, vol. 278(C).
    17. Wang, Juling & Liu, Lihua & Ou, Yangchao, 2024. "Low-carbon city pilot policy and corporate environmental violations: Evidence from heavily polluting firms in China," Finance Research Letters, Elsevier, vol. 65(C).
    18. Chao Zeng & Shanying Jiang & Fengxiu Zhou, 2024. "Can Low-Carbon City Pilot Policy Promote Regional Green High-Quality Development?," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
    19. Guorong Chen & Changyan Liu, 2023. "Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    20. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:2:d:10.1007_s10668-023-02906-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.