IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p1919-1930.html
   My bibliography  Save this article

A holistic low carbon city indicator framework for sustainable development

Author

Listed:
  • Tan, Sieting
  • Yang, Jin
  • Yan, Jinyue
  • Lee, Chewtin
  • Hashim, Haslenda
  • Chen, Bin

Abstract

Many cities are pursuing the low-carbon practices to reduce CO2 and other environmental emissions. However, it is still unclear which aspects a low-carbon city (LCC) covers and how to quantify and certify its low carbon level. In this paper, an indicator framework for the evaluation of LCC was established from the perspectives of Economic, Energy pattern, Social and Living, Carbon and Environment, Urban mobility, Solid waste, and Water. A comprehensive evaluation method was employed for LCC ranking by using the entropy weighting factor method. The benchmark values for LCC certification were also identified. The framework was applied to 10 global cities to rank their low-carbon levels. The comparison of cities at different levels of economic, social, and environmental development enhances the holistic of the study. The results showed that Stockholm, Vancouver, and Sydney ranked higher than the benchmark value, indicating these cities achieved a high level of low-carbon development. São Paulo, London, and Mexico City are still in the slow transition towards LCC. Beijing and New York each has much lower LCC level than the benchmark value due to the poor environmental performance and infrastructure supports caused by intensive human activities. The proposed indicator system serves as a guideline for the standardization of LCC and further identifies the key aspects of low-carbon management for different cities.

Suggested Citation

  • Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1919-1930
    DOI: 10.1016/j.apenergy.2016.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916303580
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuba Bakıcı & Esteve Almirall & Jonathan Wareham, 2013. "A Smart City Initiative: the Case of Barcelona," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 135-148, June.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    4. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    5. Sharma, Tarun & Balachandra, P., 2015. "Benchmarking sustainability of Indian electricity system: An indicator approach," Applied Energy, Elsevier, vol. 142(C), pages 206-220.
    6. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
    7. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    8. Caragliu, A. & Del Bo, C. & Nijkamp, P., 2009. "Smart cities in Europe," Serie Research Memoranda 0048, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    9. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    10. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    11. Jim Skea & Shuzo Nishioka, 2008. "Policies and practices for a low-carbon society," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 5-16, December.
    12. Portugal-Pereira, Joana & Esteban, Miguel, 2014. "Implications of paradigm shift in Japan’s electricity security of supply: A multi-dimensional indicator assessment," Applied Energy, Elsevier, vol. 123(C), pages 424-434.
    13. Chen, Hong & Long, Ruyin & Niu, Wenjing & Feng, Qun & Yang, Ranran, 2014. "How does individual low-carbon consumption behavior occur? – An analysis based on attitude process," Applied Energy, Elsevier, vol. 116(C), pages 376-386.
    14. Shigeto, Sawako & Yamagata, Yoshiki & Ii, Ryota & Hidaka, Masato & Horio, Masayuki, 2012. "An easily traceable scenario for 80% CO2 emission reduction in Japan through the final consumption-based CO2 emission approach: A case study of Kyoto-city," Applied Energy, Elsevier, vol. 90(1), pages 201-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shaoqing & Xu, Bing & Chen, Bin, 2018. "Unfolding the interplay between carbon flows and socioeconomic development in a city: What can network analysis offer?," Applied Energy, Elsevier, vol. 211(C), pages 403-412.
    2. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    3. Evelin Priscila Trindade & Marcus Phoebe Farias Hinnig & Eduardo Moreira da Costa & Jamile Sabatini Marques & Rogério Cid Bastos & Tan Yigitcanlar, 2017. "Sustainable development of smart cities: a systematic review of the literature," Journal of Open Innovation: Technology, Market, and Complexity, MDPI, Open Access Journal, vol. 3(3), pages 1-14, August.
    4. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    5. Zhang, L.P. & Zhou, P., 2018. "A non-compensatory composite indicator approach to assessing low-carbon performance," European Journal of Operational Research, Elsevier, vol. 270(1), pages 352-361.
    6. Zhang, Xiaoshun & Chen, Yixuan & Yu, Tao & Yang, Bo & Qu, Kaiping & Mao, Senmao, 2017. "Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems," Applied Energy, Elsevier, vol. 189(C), pages 157-176.
    7. Wang, Xin & Li, Zhengwei & Meng, Haixing & Wu, Jiang, 2017. "Identification of key energy efficiency drivers through global city benchmarking: A data driven approach," Applied Energy, Elsevier, vol. 190(C), pages 18-28.
    8. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    9. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    10. Kılkış, Şiir, 2019. "Benchmarking the sustainability of urban energy, water and environment systems and envisioning a cross-sectoral scenario for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 529-545.
    11. Antonia Gravagnuolo & Mariarosaria Angrisano & Luigi Fusco Girard, 2019. "Circular Economy Strategies in Eight Historic Port Cities: Criteria and Indicators Towards a Circular City Assessment Framework," Sustainability, MDPI, Open Access Journal, vol. 11(13), pages 1-24, June.
    12. Huang, Ying & Liao, Cuiping & Zhang, Jingjing & Guo, Hongxu & Zhou, Nan & Zhao, Daiqing, 2019. "Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Li, Wenxiang & Bao, Lei & Wang, Luqi & Li, Ye & Mai, Xianmin, 2019. "Comparative evaluation of global low-carbon urban transport," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 14-26.
    14. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    15. Chenyu Lu & Jiaqi Yang & Hengji Li & Shulei Jin & Min Pang & Chengpeng Lu, 2019. "Research on the Spatial–Temporal Synthetic Measurement of the Coordinated Development of Population-Economy-Society-Resource-Environment (PESRE) Systems in China Based on Geographic Information System," Sustainability, MDPI, Open Access Journal, vol. 11(10), pages 1-18, May.
    16. Qingduo Mao & Ben Ma & Hongshuai Wang & Qi Bian, 2019. "Investigating Policy Instrument Adoption in Low-Carbon City Development: A Case Study from China," Energies, MDPI, Open Access Journal, vol. 12(18), pages 1-17, September.
    17. Longyu Shi & Xueqin Xiang & Wei Zhu & Lijie Gao, 2018. "Standardization of the Evaluation Index System for Low-Carbon Cities in China: A Case Study of Xiamen," Sustainability, MDPI, Open Access Journal, vol. 10(10), pages 1-20, October.
    18. Vassileva, Iana & Campillo, Javier & Schwede, Sebastian, 2017. "Technology assessment of the two most relevant aspects for improving urban energy efficiency identified in six mid-sized European cities from case studies in Sweden," Applied Energy, Elsevier, vol. 194(C), pages 808-818.
    19. Li, Haoran & He, Yurong & Wang, Changhong & Wang, Xinzhi & Hu, Yanwei, 2019. "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications," Applied Energy, Elsevier, vol. 236(C), pages 117-126.
    20. Weiliang Wang & Dan Wang & Hongjie Jia & Guixiong He & Qing’e Hu & Pang-Chieh Sui & Menghua Fan, 2017. "Performance Evaluation of a Hydrogen-Based Clean Energy Hub with Electrolyzers as a Self-Regulating Demand Response Management Mechanism," Energies, MDPI, Open Access Journal, vol. 10(8), pages 1-23, August.
    21. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, Open Access Journal, vol. 11(6), pages 1-18, June.
    22. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    23. Comodi, Gabriele & Bartolini, Andrea & Carducci, Francesco & Nagaranjan, Balamurugan & Romagnoli, Alessandro, 2019. "Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1919-1930. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.