IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v68y2025i1d10.1007_s00181-024-02635-7.html
   My bibliography  Save this article

Measuring and explaining efficiency of pre-vaccine country responses to COVID-19 pandemic: a conditional robust nonparametric approach

Author

Listed:
  • Arthur S. Kuchenbecker

    (EPGE Brazilian School of Economics and Finance (FGV EPGE))

  • Hudson S. Torrent

    (Universidade Federal do Rio Grande do Sul (UFRGS))

  • Flavio A. Ziegelmann

    (Universidade Federal do Rio Grande do Sul (UFRGS))

Abstract

In this paper, we propose the use of a conditional nonparametric robust estimator to evaluate countries pre-vaccine responses to the outburst of COVID-19 pandemic. We collect data for 105 countries (comprehending the initial period of the pandemic through the end of May 2021), with variables regarding the death toll, economic indicators, demographic characteristics and non-pharmaceutical interventions. We create a novel empirical framework for estimating efficiency of countries responses in more general terms than simply evaluating healthcare system performance. We use two distinct well-known second-stage approaches: regressing the conditional efficiency scores on the environmental factors, in order to compute measures of managerial efficiency to rank responses; and regressing the ratio of conditional and unconditional scores on conditioning factors, seeking to explore the relationship between non-pharmaceutical interventions and estimated efficiencies. Our results indicate which countries and regions stood out for presenting efficient/inefficient responses and point to an expected conclusion: The environmental factor elderly population has a significant and unfavorable effect on a country efficiency. Furthermore, the factors median stringency index and median retail and recreation visitors change show no significant effect on efficiency.

Suggested Citation

  • Arthur S. Kuchenbecker & Hudson S. Torrent & Flavio A. Ziegelmann, 2025. "Measuring and explaining efficiency of pre-vaccine country responses to COVID-19 pandemic: a conditional robust nonparametric approach," Empirical Economics, Springer, vol. 68(1), pages 107-137, January.
  • Handle: RePEc:spr:empeco:v:68:y:2025:i:1:d:10.1007_s00181-024-02635-7
    DOI: 10.1007/s00181-024-02635-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-024-02635-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-024-02635-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nurhafiza Md Hamzah & Ming-Miin Yu & Kok Fong See, 2021. "Assessing the efficiency of Malaysia health system in COVID-19 prevention and treatment response," Health Care Management Science, Springer, vol. 24(2), pages 273-285, June.
    2. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    3. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    4. Léopold Simar & Paul Wilson, 2011. "Two-stage DEA: caveat emptor," Journal of Productivity Analysis, Springer, vol. 36(2), pages 205-218, October.
    5. Kristof De Witte & Mika Kortelainen, 2013. "What explains the performance of students in a heterogeneous environment? Conditional efficiency estimation with continuous and discrete environmental variables," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2401-2412, June.
    6. Simar, Léopold & Wilson, Paul W., 2013. "Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives," Foundations and Trends(R) in Econometrics, now publishers, vol. 5(3–4), pages 183-337, June.
    7. Jeffrey D Sachs & Salim S Abdool Karim & Lara Aknin & Joseph Allen & Kirsten Brosbol & Francesca Colombo & Gabriela Cuevas Barron & Maria Fernanda Espinosa & Vitor Gaspar & Alejandro Gaviria & Andy Ha, 2022. "The Lancet Commission on lessons for the future from the COVID-19 pandemic," DEOS Working Papers 2226, Athens University of Economics and Business.
    8. Luiza Bădin & Cinzia Daraio & Léopold Simar, 2014. "Explaining inefficiency in nonparametric production models: the state of the art," Annals of Operations Research, Springer, vol. 214(1), pages 5-30, March.
    9. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    10. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    11. Racine, Jeff, 1997. "Consistent Significance Testing for Nonparametric Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 369-378, July.
    12. Cordero, José Manuel & Salinas-Jiménez, Javier & Salinas-Jiménez, M Mar, 2017. "Exploring factors affecting the level of happiness across countries: A conditional robust nonparametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 256(2), pages 663-672.
    13. Cinzia Daraio & Léopold Simar, 2007. "Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach," Journal of Productivity Analysis, Springer, vol. 28(1), pages 13-32, October.
    14. Daouia, Abdelaati & Gijbels, Irène, 2011. "Robustness and inference in nonparametric partial frontier modeling," Journal of Econometrics, Elsevier, vol. 161(2), pages 147-165, April.
    15. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    16. Daniel Susskind & David Vines, 2020. "The economics of the COVID-19 pandemic: an assessment," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 1-13.
    17. Richard Gearhart & Lyudmyla Sonchak-Ardan & Nyakundi Michieka, 2022. "The efficiency of COVID cases to COVID policies: a robust conditional approach," Empirical Economics, Springer, vol. 63(6), pages 2903-2948, December.
    18. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    19. Daraio, Cinzia & Simar, Leopold, 2006. "A robust nonparametric approach to evaluate and explain the performance of mutual funds," European Journal of Operational Research, Elsevier, vol. 175(1), pages 516-542, November.
    20. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
    21. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    22. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    23. Shima Hamidi & Sadegh Sabouri & Reid Ewing, 2020. "Does Density Aggravate the COVID-19 Pandemic?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 86(4), pages 495-509, October.
    24. Daniel L. Millimet & Christopher F. Parmeter, 2022. "COVID‐19 severity: A new approach to quantifying global cases and deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-Torres, Laura & Johnes, Jill & Elliott, Caroline & Polo, Cristina, 2021. "The effects of competition and collaboration on efficiency in the UK independent school sector," Economic Modelling, Elsevier, vol. 96(C), pages 40-53.
    2. Belmonte-Martin, Irene & Ortiz, Lidia & Polo, Cristina, 2021. "Local tax management in Spain: A study of the conditional efficiency of provincial tax agencies," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    3. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    4. Polemis, Michael L. & Tzeremes, Nickolaos G., 2019. "Competitive conditions and sectors’ productive efficiency: A conditional non-parametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1104-1118.
    5. Cordero, José Manuel & Pedraja-Chaparro, Francisco & Pisaflores, Elsa C. & Polo, Cristina, 2016. "Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach," MPRA Paper 70674, University Library of Munich, Germany.
    6. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    7. Cordero, Jose M. & Polo, Cristina & Santín, Daniel & Simancas, Rosa, 2018. "Efficiency measurement and cross-country differences among schools: A robust conditional nonparametric analysis," Economic Modelling, Elsevier, vol. 74(C), pages 45-60.
    8. Richard Gearhart & Lyudmyla Sonchak-Ardan & Nyakundi Michieka, 2022. "The efficiency of COVID cases to COVID policies: a robust conditional approach," Empirical Economics, Springer, vol. 63(6), pages 2903-2948, December.
    9. José Manuel Cordero & Carlos Díaz Caro & Francisco Pedraja Chaparro & Cristina Polo Fernández, 2020. "Tributos cedidos y eficiencia en la gestión tributaria de las Comunidades Autónomas," Hacienda Pública Española / Review of Public Economics, IEF, vol. 232(1), pages 75-112, March.
    10. Cordero, José Manuel & Alonso-Morán, Edurne & Nuño-Solinis, Roberto & Orueta, Juan F. & Arce, Regina Sauto, 2015. "Efficiency assessment of primary care providers: A conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 240(1), pages 235-244.
    11. Calogero Guccio & Domenico Lisi & Marco Martorana & Anna Mignosa, 2017. "On the role of cultural participation in tourism destination performance: an assessment using robust conditional efficiency approach," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 41(2), pages 129-154, May.
    12. López-Herrera, Carmen & Cordero, José M. & Pedraja-Chaparro, Francisco & Polo, Cristina, 2023. "Fiscal rules and their influence on public sector efficiency," MPRA Paper 119018, University Library of Munich, Germany.
    13. De Witte, Kristof & Schiltz, Fritz, 2018. "Measuring and explaining organizational effectiveness of school districts: Evidence from a robust and conditional Benefit-of-the-Doubt approach," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1172-1181.
    14. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2019. "A bootstrap approach for bandwidth selection in estimating conditional efficiency measures," European Journal of Operational Research, Elsevier, vol. 277(2), pages 784-797.
    15. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    16. Luiza Bădin & Cinzia Daraio & Léopold Simar, 2014. "Explaining inefficiency in nonparametric production models: the state of the art," Annals of Operations Research, Springer, vol. 214(1), pages 5-30, March.
    17. Gearhart, Richard & Michieka, Nyakundi & Anders, Anne, 2023. "The effectiveness of COVID deaths to COVID policies: A robust conditional approach," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 376-394.
    18. Daraio, Cinzia & Simar, Léopold, 2014. "Directional distances and their robust versions: Computational and testing issues," European Journal of Operational Research, Elsevier, vol. 237(1), pages 358-369.
    19. Gearhart, Richard S. & Michieka, Nyakundi M., 2018. "A comparison of the robust conditional order-m estimation and two stage DEA in measuring healthcare efficiency among California counties," Economic Modelling, Elsevier, vol. 73(C), pages 395-406.
    20. Gearhart, Richard & Michieka, Nyakundi, 2019. "Natural resource abundance and healthcare efficiency in Appalachia: A robust conditional approach," Energy Policy, Elsevier, vol. 129(C), pages 985-996.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:68:y:2025:i:1:d:10.1007_s00181-024-02635-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.