IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v214y2014i1p5-3010.1007-s10479-012-1173-7.html
   My bibliography  Save this article

Explaining inefficiency in nonparametric production models: the state of the art

Author

Listed:
  • Luiza Bădin
  • Cinzia Daraio
  • Léopold Simar

Abstract

The performance of economic producers is often affected by external or environmental factors that, unlike the inputs and the outputs, are not under the control of the Decision Making Units (DMUs). These factors can be included in the model as exogenous variables and can help to explain the efficiency differentials, as well as improve the managerial policy of the evaluated units. A fully nonparametric methodology, which includes external variables in the frontier model and defines conditional DEA and FDH efficiency scores, is now available for investigating the impact of external-environmental factors on the performance. In this paper, we offer a state-of-the-art review of the literature, which has been proposed to include environmental variables in nonparametric and robust (to outliers) frontier models and to analyse and interpret the conditional efficiency scores, capturing their impact on the attainable set and/or on the distribution of the inefficiency scores. This paper develops and complements the approach of Bădin et al. ( 2012 ) by suggesting a procedure that allows us to make local inference and provide confidence intervals for the impact of the external factors on the process. We advocate for the nonparametric conditional methodology, which avoids the restrictive “separability” assumption required by the two-stage approaches in order to provide meaningful results. An illustration with real data on mutual funds shows the usefulness of the proposed approach. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • Luiza Bădin & Cinzia Daraio & Léopold Simar, 2014. "Explaining inefficiency in nonparametric production models: the state of the art," Annals of Operations Research, Springer, vol. 214(1), pages 5-30, March.
  • Handle: RePEc:spr:annopr:v:214:y:2014:i:1:p:5-30:10.1007/s10479-012-1173-7
    DOI: 10.1007/s10479-012-1173-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1173-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1173-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.
    2. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    3. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    4. Badin, Luiza & Daraio, Cinzia & Simar, Léopold, 2010. "Optimal bandwidth selection for conditional efficiency measures: A data-driven approach," European Journal of Operational Research, Elsevier, vol. 201(2), pages 633-640, March.
    5. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2008. "Local likelihood estimation of truncated regression and its partial derivatives: Theory and application," Journal of Econometrics, Elsevier, vol. 146(1), pages 185-198, September.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(6), pages 855-877, December.
    8. Léopold Simar & Paul Wilson, 2011. "Inference by the m out of n bootstrap in nonparametric frontier models," Journal of Productivity Analysis, Springer, vol. 36(1), pages 33-53, August.
    9. Léopold Simar & Paul Wilson, 2011. "Two-stage DEA: caveat emptor," Journal of Productivity Analysis, Springer, vol. 36(2), pages 205-218, October.
    10. Cinzia Daraio & Léopold Simar, 2007. "Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach," Journal of Productivity Analysis, Springer, vol. 28(1), pages 13-32, October.
    11. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    12. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    13. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    14. Murthi, B. P. S. & Choi, Yoon K. & Desai, Preyas, 1997. "Efficiency of mutual funds and portfolio performance measurement: A non-parametric approach," European Journal of Operational Research, Elsevier, vol. 98(2), pages 408-418, April.
    15. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    16. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    17. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    18. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    19. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    20. Avkiran, Necmi K. & Rowlands, Terry, 2008. "How to better identify the true managerial performance: State of the art using DEA," Omega, Elsevier, vol. 36(2), pages 317-324, April.
    21. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, October.
    22. Daraio, Cinzia & Simar, Leopold, 2006. "A robust nonparametric approach to evaluate and explain the performance of mutual funds," European Journal of Operational Research, Elsevier, vol. 175(1), pages 516-542, November.
    23. Avkiran, Necmi K., 2009. "Removing the impact of environment with units-invariant efficient frontier analysis: An illustrative case study with intertemporal panel data," Omega, Elsevier, vol. 37(3), pages 535-544, June.
    24. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    25. Seok-Oh Jeong & Byeong Park & Léopold Simar, 2010. "Nonparametric conditional efficiency measures: asymptotic properties," Annals of Operations Research, Springer, vol. 173(1), pages 105-122, January.
    26. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    27. Paradi, Joseph C. & Rouatt, Stephen & Zhu, Haiyan, 2011. "Two-stage evaluation of bank branch efficiency using data envelopment analysis," Omega, Elsevier, vol. 39(1), pages 99-109, January.
    28. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2019. "A bootstrap approach for bandwidth selection in estimating conditional efficiency measures," European Journal of Operational Research, Elsevier, vol. 277(2), pages 784-797.
    2. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    3. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    4. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    5. Camilla Mastromarco & Léopold Simar, 2015. "Effect of FDI and Time on Catching Up: New Insights from a Conditional Nonparametric Frontier Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 826-847, August.
    6. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    7. Bjørndal, Endre & Bjørndal, Mette & Cullmann, Astrid & Nieswand, Maria, 2018. "Finding the right yardstick: Regulation of electricity networks under heterogeneous environments," European Journal of Operational Research, Elsevier, vol. 265(2), pages 710-722.
    8. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    9. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    10. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    11. Endre Bjoerndal & Mette Bjoerndal & Astrid Cullmann & Maria Nieswand, 2016. "Finding the Right Yardstick: Regulation under Heterogeneous Environments," Discussion Papers of DIW Berlin 1555, DIW Berlin, German Institute for Economic Research.
    12. Simar, Léopold & Vanhems, Anne & Van Keilegom, Ingrid, 2016. "Unobserved heterogeneity and endogeneity in nonparametric frontier estimation," Journal of Econometrics, Elsevier, vol. 190(2), pages 360-373.
    13. Baležentis, Tomas & De Witte, Kristof, 2015. "One- and multi-directional conditional efficiency measurement – Efficiency in Lithuanian family farms," European Journal of Operational Research, Elsevier, vol. 245(2), pages 612-622.
    14. De Witte, Kristof & Mika, Kortelainen, 2009. "Blaming the exogenous environment? Conditional efficiency estimation with continuous and discrete exogenous variables," MPRA Paper 14034, University Library of Munich, Germany.
    15. Nolwenn Roudaut & Anne Vanhems, 2012. "Explaining firms efficiency in the Ivorian manufacturing sector: a robust nonparametric approach," Journal of Productivity Analysis, Springer, vol. 37(2), pages 155-169, April.
    16. Daraio, Cinzia & Simar, Léopold, 2014. "Directional distances and their robust versions: Computational and testing issues," European Journal of Operational Research, Elsevier, vol. 237(1), pages 358-369.
    17. Polemis, Michael L. & Tzeremes, Nickolaos G., 2019. "Competitive conditions and sectors’ productive efficiency: A conditional non-parametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1104-1118.
    18. Badin, Luiza & Daraio, Cinzia & Simar, Léopold, 2010. "Optimal bandwidth selection for conditional efficiency measures: A data-driven approach," European Journal of Operational Research, Elsevier, vol. 201(2), pages 633-640, March.
    19. Broadstock, David C. & Matousek, Roman & Meyer, Martin & Tzeremes, Nickolaos G., 2020. "Does corporate social responsibility impact firms' innovation capacity? The indirect link between environmental & social governance implementation and innovation performance," Journal of Business Research, Elsevier, vol. 119(C), pages 99-110.
    20. Cordero, Jose Manuel & Polo, Cristina & Simancas, Rosa, 2022. "Assessing the efficiency of secondary schools: Evidence from OECD countries participating in PISA 2015," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:214:y:2014:i:1:p:5-30:10.1007/s10479-012-1173-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.